查询IRF3711ZLPBF供应商
Applications
l High Frequency Synchronous Buck
Converters for Computer Processor Power
l Lead-Free
Benefits
l Low R
l Ultra-Low Gate Impedance
l Fully Characterized Avalanche Voltage
and Current
DS(on)
at 4.5V V
GS
V
DSS
20V
TO-220AB
IRF3711Z
PD - 95530
IRF3711ZPbF
IRF3711ZSPbF
IRF3711ZLPbF
HEXFET® Power MOSFET
R
DS(on)
IRF3711ZS
6.0m
D2Pak
max
:
Qg
16nC
TO-262
IRF3711ZL
Absolute Maximum Ratings
Parameter Units
V
DS
V
GS
I
@ TC = 25°C
D
@ TC = 100°C
I
D
I
DM
PD @TC = 25°C
P
@TC = 100°C
D
T
J
T
STG
Drain-to-Source Voltage V
Gate-to-Source Voltage
Continuous Drain Current, V
Continuous Drain Current, V
Pulsed Drain Current
Maximum Power Dissipation W
Maximum Power Dissipation
Linear Derating Factor W/°C
Operating Junction and °C
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
c
Thermal Resistance
Parameter Typ. Max. Units
R
JC
θ
R
CS
θ
R
JA
θ
R
JA
θ
Notes through are on page 12
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount)
i
fi
@ 10V
GS
@ 10V
GS
gi
Max.
20
± 20
92
h
65
h
380
79
40
0.53
-55 to + 175
300 (1.6mm from case)
f
f
10 lbf
y
in (1.1Nym)
––– 1.89 °C/W
0.50 –––
––– 62
––– 40
A
www.irf.com 1
7/20/04
IRF3711Z/S/LPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
∆ΒV
DSS
R
DS(on)
V
GS(th)
∆V
GS(th)
I
DSS
I
GSS
gfs Forward Transconductance 46 ––– ––– S
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage 20 ––– ––– V
∆T
Breakdown Voltage Temp. Coefficient ––– 0.013 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 4.8 6.0
––– 5.9 7.3
Gate Threshold Voltage 1.55 2.0 2.45 V
∆T
Gate Threshold Voltage Coefficient ––– -5.6 ––– mV/°C
J
Drain-to-Source Leakage Current ––– ––– 1.0 µA
––– ––– 150
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
Total Gate Charge ––– 16 24
Pre-Vth Gate-to-Source Charge ––– 4.6 –––
Post-Vth Gate-to-Source Charge ––– 1.4 ––– nC
Gate-to-Drain Charge ––– 5.3 –––
Gate Charge Overdrive ––– 4.7 ––– See Fig. 16
Switch Charge (Q
gs2
+ Qgd)
––– 6.7 –––
Output Charge ––– 9.5 ––– nC
Turn-On Delay Time ––– 12 –––
Rise Time ––– 16 –––
Turn-Off Delay Time ––– 15 ––– ns
Fall Time ––– 5.4 –––
Input Capacitance ––– 2150 –––
Output Capacitance ––– 680 ––– pF
Reverse Transfer Capacitance ––– 320 –––
VGS = 0V, ID = 250µA
Reference to 25°C, I
mΩ
V
= 10V, ID = 15A
GS
V
= 4.5V, ID = 12A
GS
= VGS, ID = 250µA
V
DS
V
= 16V, VGS = 0V
DS
V
= 16V, VGS = 0V, TJ = 125°C
DS
VGS = 20V
V
= -20V
GS
= 10V, ID = 12A
V
DS
= 10V
V
DS
V
= 4.5V
GS
I
= 12A
D
V
= 10V, VGS = 0V
DS
V
= 10V, VGS = 4.5V
DD
ID = 12A
Clamped Inductive Load
V
= 0V
GS
V
= 10V
DS
ƒ = 1.0MHz
Conditions
= 1mA
D
e
e
e
Avalanche Characteristics
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
c
Repetitive Avalanche Energy
d
c
Parameter Units
Typ.
–––
–––
–––
Max.
130
12
7.9
mJ
A
mJ
Diode Characteristics
Parameter Min. Typ. Max. Units
h
I
S
Continuous Source Current ––– –––
(Body Diode) A
I
SM
V
SD
t
rr
Q
rr
Pulsed Source Current ––– ––– 380
(Body Diode)
c
Diode Forward Voltage ––– ––– 1.0 V
Reverse Recovery Time ––– 16 24 ns
Reverse Recovery Charge ––– 6.0 9.0 nC
92
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 12A, VGS = 0V
= 25°C, IF = 12A, VDD = 10V
T
J
di/dt = 100A/µs
Conditions
D
G
S
e
e
2 www.irf.com
IRF3711Z/S/LPbF
1000
VGS
TOP 10V
D
100
10
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
3.0V
60µs PULSE WIDTH
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
I
Tj = 25°C
1
0.1 1 10
VDS, Drain-to-Source Voltage (V)
1000
)
Α
(
t
n
e
r
r
100
u
C
e
c
r
u
o
S
o
t
-
10
n
i
a
r
D
,
D
I
TJ = 25°C
V
DS
TJ = 175°C
= 10V
60µs PULSE WIDTH
1
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
1000
VGS
TOP 10V
100
D
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
10
3.0V
60µs PULSE WIDTH
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
I
Tj = 175°C
1
0.1 1 10
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.0
e
c
n
a
t
s
i
s
e
R
n
O
)
e
d
c
e
r
z
u
i
l
o
a
S
-
m
o
r
t
o
n
N
i
(
a
r
D
,
)
n
o
(
S
D
R
ID = 30A
V
= 10V
GS
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
vs. Temperature
www.irf.com 3
IRF3711Z/S/LPbF
)
F
p
(
e
c
n
a
t
i
c
a
p
a
C
,
C
10000
1000
100
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
= C
= C
+ Cgd, C
gs
gd
+ C
ds
Ciss
Coss
Crss
gd
iss
C
rss
C
oss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000.0
)
A
(
t
100.0
n
e
r
r
u
C
n
i
a
r
10.0
D
e
s
r
e
v
e
R
,
D
S
I
TJ = 175°C
1.0
0.1
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-toDrain Voltage (V)
TJ = 25°C
SHORTED
ds
V
GS
= 0V
12
)
V
(
e
g
a
t
l
o
V
e
c
r
u
o
S
o
t
e
t
a
G
,
V
ID= 12A
10
8
6
4
S
G
2
0
0 5 10 15 20 25 30 35 40
Q
VDS= 15V
VDS= 10V
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
10000
)
A
(
t
1000
n
e
r
r
u
C
e
c
r
u
100
o
S
o
t
n
i
a
r
D
10
,
D
I
Tc = 25°C
Tj = 175°C
Single Pulse
1
0 1 10 100
OPERATION IN THIS AREA
LIMITED BY RDS(on)
V
, Drain-toSource Voltage (V)
DS
100µsec
1msec
10msec
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com