IOR IRF3007 User Manual

查询IRF3007供应商
PD -94424A
AUTOMOTIVE MOSFET
Typical Applications
42 Volts Automotive Electrical Systems
Features
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Automotive [Q101] Qualified
HEXFET® Power MOSFET
D
G
S
IRF3007
V
= 75V
DSS
R
DS(on)
I
D
= 0.0126
= 75A
Description
Specifically designed for Automotive applications, this design of HEXFET lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
®
Power MOSFETs utilizes the
TO-220AB
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon limited) 80 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig.9) 56 A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package limited) 75 I
DM
PD @TC = 25°C Power Dissipation 200 W
V
GS
E
AS
E
(6 sigma) Single Pulse Avalanche Energy Tested Value 946
AS
I
AR
E
AR
T
J
T
STG
Pulsed Drain Current 320
Linear Derating Factor 1.3 W/°C Gate-to-Source Voltage ± 20 V Single Pulse Avalanche Energy 280 mJ
Avalanche Current See Fig.12a, 12b, 15, 16 A Repetitive Avalanche Energy mJ Operating Junction and -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N•m (lbf•in)
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case ––– 0.74 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62
www.irf.com 1
9/16/02
IRF3007
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 640 ––– VGS = 0V, VDS = 0V to 60V
oss
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
 Starting T
RG = 25, I
I
SD
TJ ≤ 175°C
Pulse width ≤ 400µs; duty cycle 2%.
2 www.irf.com
Drain-to-Source Breakdown Voltage 75 ––– ––– V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient ––– 0.084 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– 10.5 12.6 m VGS = 10V, ID = 48A Gate Threshold Voltage 2.0 –– – 4.0 V VDS = 10V, ID = 250µA Forward Transconductance 180 ––– ––– S VDS = 25V, ID = 48A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 60V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 200 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200
VDS = 75V, VGS = 0V
µA
nA
VGS = -20V Total Gate Charge ––– 8 9 130 ID = 48A Gate-to-Source Charge – –– 21 32 nC VDS = 60V Gate-to-Drain ("Miller") Charge ––– 30 45 VGS = 10V Turn-On Delay Time ––– 12 ––– VDD = 38V Rise Time ––– 80 ––– ID = 48A Turn-Off Delay Time ––– 55 ––– RG = 4.6
ns
Fall Time ––– 49 ––– VGS = 10V
4.5
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
7.5
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact Input Capacitance ––– 3270 ––– VGS = 0V Output Capacitance ––– 520 ––– pF VDS = 25V Reverse Transfer Capacitance ––– 78 ––– ƒ = 1.0MHz, See Fig. 5 Output Capacitance ––– 3500 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 340 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz
Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
80
320
showing the
A
p-n junction diode. Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 48A, VGS = 0V Reverse Recovery Time ––– 85 130 ns TJ = 25°C, IF = 48A, VDD = 38V Reverse Recovery Charge ––– 280 420 nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
C
eff. is a fixed capacitance that gives the same charging time
oss
= 25°C, L = 0.24mH
J
= 48A, VGS=10V (See Figure 12).
AS
48A, di/dt 330A/µs, V
DD
V
(BR)DSS
as C Limited by T avalanche performance.
,
This value determined from sample failure population. 100%
oss
while V
is rising from 0 to 80% V
DS
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
DSS
tested to this value in production.
G
G
.
D
S
D
S
IRF3007
1000
) A
(
t
n
e
r
r
100
u C e
c
r
u
o S
-
o
t
-
10
n
i
a
r D
,
D
I
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V B OTT OM 4.5V
4.5V
20µs PULSE WIDTH
1
0.1 1 10 100
Tj = 25°C
VDS, Drain-to-Source Voltage (V)
1000
) A
(
t
n
e
r
100
r
u C e
c
r
u
o S
-
o
t
-
n
i
a
r D
,
D
I
TJ = 175°C
10
1
4.0 5.0 6.0 7.0 8.0 9.0
TJ = 25°C
V
= 25V
DS
20µs PULSE WIDTH
VGS, Gate-t o-Source Voltage (V)
1000
) A
(
t
n
e
r
r
100
u C e
c
r
u
o S
-
o
t
-
10
n
i
a
r D
,
D
I
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V B OTT OM 4.5V
4.5V
20µs PULSE WIDTH
1
0.1 1 10 100
Tj = 175°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
100
) S
(
80
e
c
n
a
t
c
u
d
60
n
o
c
s
n
a
r T
40
d
r
a w
r
o F
20
,
s
f G
0
TJ = 175°C
TJ = 25°C
V
= 25V
DS
20µs PULSE WIDTH
0 40 80 120 160
ID, Drain-to-Source Cur rent (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
Loading...
+ 6 hidden pages