查询IRF3000供应商
PD- 94423
IRF3000
SMPS MOSFET
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
Benefits
l Low Gate to Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
V
DSS
300V 0.40W@VGS = 10V 1.6A
1
S
2
S
3
S
4
Top View
8
7
6
5
R
DS(on)
A
D
D
D
DG
max I
A
SO-8
Absolute Maximum Ratings
Parameter Max. Units
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 1.6
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 1.3 A
I
DM
PD @TA = 25°C Power Dissipation 2.5 W
V
GS
dv/dt Peak Diode Recovery dv/dt 8.9 V/ns
T
J
T
STG
Pulsed Drain Current 13
Linear Derating Factor 0.02 W/°C
Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 150
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
D
°C
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
θJL
R
θJA
Junction-to-Drain Lead ––– 20
Junction-to-Ambient ––– 50 °C/W
Notes through are on page 8
www.irf.com 1
4/2/02
IRF3000
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 87 ––– VGS = 0V, VDS = 0V to 240V
oss
Drain-to-Source Breakdown Voltage 300 ––– ––– VVGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.38 ––– V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance ––– 0.34 0.40 Ω VGS = 10V, ID = 0.96A
Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 25
––– ––– 250 VDS = 240V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 V
Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 300V, VGS = 0V
µA
= 30V
GS
nA
V
= -30V
GS
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 2.0 ––– ––– SVDS = 50V, ID = 0.96A
Total Gate Charge ––– 22 33 ID = 0.96A
Gate-to-Source Charge ––– 4.7 7.1 nC VDS = 240V
Gate-to-Drain ("Miller") Charge ––– 11 17 VGS = 10V,
Turn-On Delay Time ––– 8.2 ––– VDD = 150V
Rise Time ––– 7.2 ––– ID = 0.96A
Turn-Off Delay Time ––– 23 ––– RG = 2.2Ω
ns
Fall Time ––– 23 ––– VGS = 10V
Input Capacitance ––– 730 ––– VGS = 0V
Output Capacitance ––– 100 ––– VDS = 25V
Reverse Transfer Capacitance ––– 20 ––– pF ƒ = 1.0MHz
Output Capacitance ––– 940 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 39 ––– VGS = 0V, VDS = 240V, ƒ = 1.0MHz
Avalanche Characteristics
Parameter Typ. Max. Units
E
AS
I
AR
Single Pulse Avalanche Energy ––– 47 mJ
Avalanche Current ––– 1.9 A
Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
1.6
13
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 0.96A, VGS = 0V
Reverse Recovery Time ––– 86 130 ns TJ = 25°C, IF = 0.96A
Reverse RecoveryCharge ––– 250 380 nC di/dt = 100A/µs
2 www.irf.com
D
S
IRF3000
100
)
A
(
t
10
n
e
r
r
u
C
e
c
r
1
u
o
S
-
o
t
-
n
i
a
r
0.1
D
,
D
I
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.5V
6.0V
BOTTOM 5.5V
5.5V
20µs PULSE WIDTH
0.01
0.1 1 10 100
Tj = 25°C
VDS, Drain-to-Sour ce Voltage (V)
100.0
)
A
(
t
n
e
r
10.0
r
u
C
e
c
r
u
o
S
-
o
t
-
1.0
n
i
a
r
D
,
D
I
0.1
TJ = 150°C
TJ = 25°C
V
= 50V
DS
20µs PULSE WIDTH
5.0 6.0 7.0 8.0
VGS, Gate-t o-Source Voltage (V)
100
)
A
(
t
n
e
r
r
10
u
C
e
c
r
u
o
S
-
o
t
-
1
n
i
a
r
D
,
D
I
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.5V
6.0V
BOTTOM 5.5V
5.5V
20µs PULSE WIDTH
0.1
0.1 1 10 100
Tj = 150°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.5
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
1.6A
I =
D
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature ( C)
J
V =
GS
°
10V
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com 3