AUTOMOTIVE MOSFET
IRF1405ZS-7PPbF
IRF1405ZL-7PPbF
PD - 97206A
Features
l Advanced Process Technology
l Ultra Low On-Resistance
l 175°C Operating Temperature
l Fast Switching
l Repetitive Avalanche Allowed up to Tjmax
l Lead-Free
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make this design an extremely efficient
and reliable device for use in Automotive applications and a wide variety of other applications.
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C
I
@ TC = 100°C
D
@ TC = 25°C
I
D
I
DM
PD @TC = 25°C
V
GS
E
AS
(tested)
E
AS
I
AR
E
AR
T
J
T
STG
Continuous Drain Current, V
Continuous Drain Current, V
Continuous Drain Current, V
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
c
c
@ 10V (Silicon Limited)
GS
@ 10V (See Fig. 9)
GS
@ 10V
GS
g
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
R
θJA
Junct ion-to-Case
Case-to-Sink, Flat, Greased Surface
Junct ion-to-Ambient
Junct ion-to-Ambient (PCB Mount, steady state)
j
j
S (Pin 2, 3, 5, 6, 7)
G (Pin 1)
(Package Limited)
d
h
ij
HEXFET® Power MOSFET
V
= 55V
DSS
R
DS(on)
= 4.9mΩ
ID = 120A
D2Pak 7 Pin
Max.
150
100
120
590
230
1.5
± 20
250
810
See Fig.12a,12b,15,16
-55 to + 175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
––– 0.65 °C/W
0.50 –––
––– 62
––– 40
TO-263CA 7 Pin
A
W
W/°C
V
mJ
A
mJ
°C
HEXFET® is a registered trademark of International Rectifier.
www.irf.com 1
12/07/06
IRF1405ZS/L-7PPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
(BR)DSS
∆Β
R
DS(on)
V
GS(th)
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
V
DSS
SMD
eff.
Drain-to-Source Breakdown Voltage55––––––V
∆
T
Breakdown Voltage Temp. Coefficient ––– 0.054 ––– V/°C
J
Static Drain-to-Source On-Resistance –––
3.7 4.9
Gate Threshold Voltage 2.0 ––– 4.0 V
Forward Transconductance
150 ––– ––– S
Drain-to-Source Leakage Current ––– ––– 20
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leaka
e ––– ––– -200
Total Gate Charge ––– 150 230 nC
Gate-to-Source Charge ––– 37 –––
Gate-to-Drain ("Miller") Charge ––– 64 –––
Turn-On Delay Time ––– 16 ––– ns
Rise Time ––– 140 –––
Turn-Off Delay Time ––– 170 –––
Fall Time ––– 130 –––
Internal Drain Inductance ––– 4.5 ––– nH Between lead,
Internal Source Inductance ––– 7.5 ––– from package
Input Capacitance ––– 5360 ––– pF
Output Capacitance ––– 1310 –––
Reverse Transfer Capacitance ––– 340 –––
Output Capacitance ––– 6080 –––
Output Capacitance ––– 920 –––
Effective Output Capacitance ––– 1700 –––
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, I
V
= 10V, ID = 88A
GS
mΩ
V
= VGS, ID = 150µA
DS
= 25V, ID = 88A
V
DS
V
A
= 55V, VGS = 0V
DS
V
= 55V, VGS = 0V, TJ = 125°C
DS
V
= 20V
GS
V
= -20V
GS
I
= 88A
D
V
= 44V
DS
e
= 10V
V
GS
V
= 28V
DD
= 88A
I
D
= 5.0Ω
R
G
= 10V
d
V
GS
6mm (0.25in.)
and center of die contact
V
= 0V
GS
= 25V
V
DS
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
= 0V, VDS = 44V, ƒ = 1.0MHz
V
GS
VGS = 0V, VDS = 0V to 44V
D
e
= 1mA
D
G
S
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
Notes:
Continuous Source Current ––– ––– 150
(Body Diode) A
Pulsed Source Current ––– ––– 590
(Body Diode)
c
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge ––– 160 240 nC
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by T
L=0.064mH, RG = 25Ω, I
, starting TJ = 25°C,
Jmax
AS
= 88A, VGS =10V.
Part not recommended for use above this value.
Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
C
eff. is a fixed capacitance that gives the same
oss
charging time as C
V
.
DSS
oss
while V
is rising from 0 to 80%
DS
MOSFET symbol
showing the
integral reverse
p-n junction diode.
––– ––– 1.3 V
–––6395ns
TJ = 25°C, IS = 88A, VGS = 0V
T
= 25°C, IF = 88A, VDD = 28V
J
di/dt = 100A/
Limited by T
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is applied to D
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
R
is measured at TJ of approximately 90°C.
θ
2
Pak, when mounted on 1" square PCB
Solder mounted on IMS substrate.
Conditions
e
s
G
2 www.irf.com
D
S
e
IRF1405ZS/L-7PPbF
1000
TOP 15V
)
A
(
t
n
e
r
100
r
u
C
e
c
r
u
o
S
o
t
-
10
n
i
a
r
D
,
D
I
4.5V
≤
1
Tj = 25°C
BOTTOM 4.5V
60µs PULSE WIDTH
0.1 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
1000
TOP 15V
)
A
(
t
n
e
r
100
r
u
C
e
c
r
u
o
S
o
t
-
10
n
i
a
r
D
,
D
I
4.5V
60µs PULSE WIDTH
≤
BOTTOM 4.5V
Tj = 175°C
1
0.1 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
1000
)
Α
(
t
100
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
0.1
10
1
TJ = 175°C
TJ = 25°C
V
= 25V
DS
≤
60µs PULSE WIDTH
0 2 4 6 8 10 12
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
150
)
S
(
125
e
c
n
a
t
c
100
u
d
n
o
c
s
75
n
a
r
T
d
r
50
a
w
r
o
F
,
s
25
f
G
TJ = 25°C
TJ = 175°C
V
= 10V
DS
300µs PULSE WIDTH
0
0 25 50 75 100 125 150 175 200
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
www.irf.com 3
IRF1405ZS/L-7PPbF
100000
)
F
10000
p
(
e
c
n
a
t
i
c
a
p
a
C
,
1000
C
100
V
= 0V, f = 1 MHZ
GS
C
= C
iss
rss
oss
= C
= C
C
C
gs
gd
ds
C
iss
oss
rss
C
C
1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
+ Cgd, C
+ C
gd
SHORTED
ds
12.0
ID= 88A
)
10.0
V
(
e
g
a
t
l
8.0
o
V
e
c
r
u
6.0
o
S
o
t
e
t
4.0
a
G
,
S
G
2.0
V
0.0
0 50 100 150 200
VDS= 44V
VDS= 28V
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
1000
)
A
(
t
n
e
r
r
100
u
C
n
i
a
r
D
e
s
r
e
v
10
e
R
,
D
S
I
1
TJ = 175°C
TJ = 25°C
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
V
GS
= 0V
10000
OPERATION IN THIS AREA
)
1000
A
(
t
n
e
r
r
100
u
C
e
c
r
u
10
o
S
o
t
n
1
i
a
r
D
,
D
I
Tc = 25°C
0.1
Tj = 175°C
Single Pulse
0.01
1 10 100 1000
LIMITED BY RDS(on)
100µsec
1msec
DC
10msec
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com