查询IRF1312供应商
PD- 94504
IRF1312
IRF1312S
IRF1312L
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
l Motor Control
l Uninterrutible Power Supplies
V
DSS
R
DS(on)
max I
80V 10mΩ 95A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
App. Note AN1001)
l Fully Characterized Avalanche Voltage
to Simplify Design, (See
OSS
TO-220AB
IRF1312
D2Pak
IRF1312S
TO-262
IRF1312L
and Current
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 95
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 67 A
I
DM
PD @TA = 25°C Power Dissipation 3.8 W
PD @TC = 25°C Power Dissipation 210
V
GS
dv/dt Peak Diode Recovery dv/dt 5.1 V/ns
T
J
T
STG
Pulsed Drain Current 380
Linear Derating Factor 1.4 W/°C
Gate-to-Source Voltage ± 20 V
Operating Junction and -55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
D
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
R
θJA
Notes through are on page 11
Junction-to-Case ––– 0.73
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
Junction-to-Ambient ––– 62
Junction-to-Ambient (PCB mount) ––– 40
www.irf.com 1
7/01/02
IRF1312/S/L
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 620 ––– VGS = 0V, VDS = 0V to 64V
oss
Drain-to-Source Breakdown Voltage 80 ––– ––– V VGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.078 ––– V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance ––– 6.6 10 mΩ VGS = 10V, ID = 57A
Gate Threshold Voltage 3. 5 ––– 5.5 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 1.0
––– ––– 250 VDS = 64V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 76V, VGS = 0V
µA
nA
V
= -20V
GS
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 92 ––– ––– S VDS = 25V, ID = 57A
Total Gate Charge ––– 93 140 ID = 57A
Gate-to-Source Charge ––– 36 ––– nC VDS = 40V
Gate-to-Drain ("Miller") Charge ––– 34 ––– VGS = 10V,
Turn-On Delay Time ––– 25 ––– VDD = 40V
Rise Time ––– 130 ––– ID = 57A
Turn-Off Delay Time ––– 47 ––– RG = 4.5Ω
ns
Fall Time ––– 51 ––– VGS = 10V
Input Capacitance ––– 5450 ––– VGS = 0V
Output Capacitance ––– 550 ––– VDS = 25V
Reverse Transfer Capacitance ––– 340 ––– pF ƒ = 1.0MHz
Output Capacitance ––– 1910 –– – VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 380 ––– VGS = 0V, VDS = 64V, ƒ = 1.0MHz
Avalanche Characteristics
Parameter Typ. Max. Units
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy ––– 250 mJ
Avalanche Current ––– 57 A
Repetitive Avalanche Energy ––– 21 mJ
Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
95
380
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 57A, VGS = 0V
Reverse Recovery Time ––– 64 96 ns TJ = 25°C, IF = 57A
Reverse RecoveryCharge ––– 150 230 nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2 www.irf.com
D
S
IRF1312/S/L
1000
)
100
A
(
t
n
e
r
r
u
C
10
e
c
r
u
o
S
-
1
o
t
-
n
i
a
r
D
,
0.1
D
I
0.01
0.1 1 10 100
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
B OTT OM 5. 0V
20µs PULSE W IDTH
5.0V
Tj = 25°C
VDS, Drain-to-Source Voltage (V)
1000.00
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
-
o
t
-
n
i
a
r
D
,
D
I
100.00
10.00
1.00
0.10
0.01
TJ = 175°C
TJ = 25°C
V
= 25V
DS
20µs PULSE WIDTH
5 6 7 8 9 10
VGS, Gate-to-Source Voltage (V)
1000
)
A
(
t
n
e
r
r
100
u
C
e
c
r
u
o
S
-
o
t
-
10
n
i
a
r
D
,
D
I
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
B OTT OM 5. 0V
5.0V
20µs PULSE WIDTH
Tj = 25°C
1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.5
e
c
n
a
t
s
i
s
e
R
n
O
e
)
c
d
r
e
u
z
i
o
l
S
a
-
m
o
t
r
-
o
n
i
N
(
a
r
D
,
)
n
o
(
S
D
R
ID = 95A
V
= 10V
GS
2.0
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (° C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com 3
IRF1312/S/L
100000
)
F
10000
p
(
e
c
n
a
t
i
c
a
p
a
C
1000
,
C
100
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
iss
SHORTED
C
= C
rss
C
= C
oss
Ciss
Coss
Crss
VDS, Drain-to-Source V oltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
)
A
(
t
n
e
r
r
u
C
n
i
a
r
D
e
s
r
e
v
e
R
,
D
S
I
100.0
10.0
TJ = 175°C
1.0
TJ = 25°C
0.1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
VSD, Source-toDrain Voltage (V)
gd
ds
+ Cgd, C
gs
+ C
gd
20
ds
ID= 57A
)
V
(
16
e
g
a
t
l
o
V
12
e
c
r
u
o
S
-
o
8
t
-
e
t
a
G
,
S
4
G
V
0
0 40 80 120 160 200
VDS= 64V
VDS= 40V
VDS= 16V
Q
Total Gate Charge (nC)
G
F O R TES T CIRCUI T
SEE FI GURE 13
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
10000
)
A
1000
(
t
n
e
r
r
u
C
100
e
c
r
u
o
S
-
10
o
t
-
n
i
a
r
D
,
1
D
I
V
= 0V
GS
Tc = 25°C
Tj = 175°C
Single Puls e
0.1
1 10 100 1000
OPERATION IN THIS AREA
LIMITED BY RDS(on)
V
, Drain-toSource Voltage (V)
DS
100µsec
1msec
10msec
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com