1 REVISION HISTORY ................................................................................................................................... 5
2 PURPOSE AND SCOPE ............................................................................................................................. 6
5 FEATURES ................................................................................................................................................ 10
5.1 GYROSCOPE FEATURES ..................................................................................................................... 10
5.2 ACCELEROMETER FEATURES ............................................................................................................. 10
5.3 ADDITIONAL FEATURES ...................................................................................................................... 10
Edited supply current numbers for different modes (section 6.4)
08/05/2011
2.2
Unit of measure for accelerometer sensitivity changed from LSB/mg to LSB/g
10/12/2011
2.3
Updated accelerometer self test specifications in Table 6.2. Updated package
dimensions (section 11.2). Updated PCB design guidelines (section 11.3)
10/18/2011
3.0
For Rev D parts. Updated accelerometer specifications in Table 6.2. Updated
accelerometer specification note (sections 8.2, 8.3, & 8.4). Updated qualification
test plan (section 12.2).
10/24/2011
3.1
Edits for clarity
Changed operating voltage range to 2.375V-3.46V
Added accelerometer Intelligence Function increment value of 1mg/LSB
(Section 6.2)
Updated absolute maximum rating for acceleration (any axis, unpowered) from
0.3ms to 0.2ms (Section 6.9)
Modified absolute maximum rating for Latch-up to Level A and ±100mA (Section
6.9, 12.2)
11/16/2011
3.2
Updated self-test response specifications for Revision D parts dated with
date code 1147 (YYWW) or later.
Edits for clarity
Added Gyro self-test (sections 5.1, 6.1, 7.6, 7.12)
Added Min/Max limits to Accel self-test response (section 6.2)
Updated Accelerometer low power mode operating currents (Section 6.3)
Added gyro self test to block diagram (section 7.5)
Updated packaging labels and descriptions (sections 11.8 & 11.9)
5/16/2012
3.3
Updated Gyro and Accelerometer self test information (sections 6.1, 6.2, 7.12)
Updated latch-up information (Section 6.9)
Updated programmable interrupts information (Section 8)
Changed shipment information from maximum of 3 reels (15K units) per shipper
box to 5 reels (25K units) per shipper box (Section 11.7)
Updated packing shipping and label information (Sections 11.8, 11.9)
Updated reliability references (Section 12.2)
This product specification provides advanced information regarding the electrical specification and design
related information for the MPU-6000™ and MPU-6050™MotionTracking™ devices, collectively called the
MPU-60X0™ or MPU™.
Electrical characteristics are based upon design analysis and simulation results only. Specifications are
subject to change without notice. Final specifications will be updated based upon characterization of
production silicon. For references to register map and descriptions of individual registers, please refer to the
MPU-6000/MPU-6050 Register Map and Register Descriptions document.
The self-test response specifications provided in this document pertain to Revision D parts with date
codes of 1147 (YYWW) or later. Please see Section 11.6 for package marking description details.
MotionInterface™ is becoming a “must-have” function being adopted by smartphone and tablet
manufacturers due to the enormous value it adds to the end user experience. In smartphones, it finds use in
applications such as gesture commands for applications and phone control, enhanced gaming, augmented
reality, panoramic photo capture and viewing, and pedestrian and vehicle navigation. With its ability to
precisely and accurately track user motions, MotionTracking technology can convert handsets and tablets
into powerful 3D intelligent devices that can be used in applications ranging from health and fitness
monitoring to location-based services. Key requirements for MotionInterface enabled devices are small
package size, low power consumption, high accuracy and repeatability, high shock tolerance, and application
specific performance programmability – all at a low consumer price point.
The MPU-60X0 is the world’s first integrated 6-axis MotionTracking device that combines a 3-axis
gyroscope, 3-axis accelerometer, and a Digital Motion Processor™ (DMP) all in a small 4x4x0.9mm
package. With its dedicated I2C sensor bus, it directly accepts inputs from an external 3-axis compass to
provide a complete 9-axis MotionFusion™ output. The MPU-60X0 MotionTracking device, with its 6-axis
integration, on-board MotionFusion™, and run-time calibration firmware, enables manufacturers to eliminate
the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing
optimal motion performance for consumers. The MPU-60X0 is also designed to interface with multiple noninertial digital sensors, such as pressure sensors, on its auxiliary I2C port. The MPU-60X0 is footprint
compatible with the MPU-30X0 family.
The MPU-60X0 features three 16-bit analog-to-digital converters (ADCs) for digitizing the gyroscope outputs
and three 16-bit ADCs for digitizing the accelerometer outputs. For precision tracking of both fast and slow
motions, the parts feature a user-programmable gyroscope full-scale range of ±250, ±500, ±1000, and
±2000°/sec (dps) and a user-programmable accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g.
An on-chip 1024 Byte FIFO buffer helps lower system power consumption by allowing the system processor
to read the sensor data in bursts and then enter a low-power mode as the MPU collects more data. With all
the necessary on-chip processing and sensor components required to support many motion-based use
cases, the MPU-60X0 uniquely enables low-power MotionInterface applications in portable applications with
reduced processing requirements for the system processor. By providing an integrated MotionFusion output,
the DMP in the MPU-60X0 offloads the intensive MotionProcessing computation requirements from the
system processor, minimizing the need for frequent polling of the motion sensor output.
Communication with all registers of the device is performed using either I2C at 400kHz or SPI at 1MHz
(MPU-6000 only). For applications requiring faster communications, the sensor and interrupt registers may
be read using SPI at 20MHz (MPU-6000 only). Additional features include an embedded temperature sensor
and an on-chip oscillator with ±1% variation over the operating temperature range.
By leveraging its patented and volume-proven Nasiri-Fabrication platform, which integrates MEMS wafers
with companion CMOS electronics through wafer-level bonding, InvenSense has driven the MPU-60X0
package size down to a revolutionary footprint of 4x4x0.9mm (QFN), while providing the highest
performance, lowest noise, and the lowest cost semiconductor packaging required for handheld consumer
electronic devices. The part features a robust 10,000g shock tolerance, and has programmable low-pass
filters for the gyroscopes, accelerometers, and the on-chip temperature sensor.
For power supply flexibility, the MPU-60X0 operates from VDD power supply voltage range of 2.375V-3.46V.
Additionally, the MPU-6050 provides a VLOGIC reference pin (in addition to its analog supply pin: VDD),
which sets the logic levels of its I2C interface. The VLOGIC voltage may be 1.8V±5% or VDD.
The MPU-6000 and MPU-6050 are identical, except that the MPU-6050 supports the I2C serial interface only,
and has a separate VLOGIC reference pin. The MPU-6000 supports both I2C and SPI interfaces and has a
single supply pin, VDD, which is both the device’s logic reference supply and the analog supply for the part.
The table below outlines these differences:
BlurFree™ technology (for Video/Still Image Stabilization)
AirSign™ technology (for Security/Authentication)
TouchAnywhere™ technology (for “no touch” UI Application Control/Navigation)
MotionCommand™ technology (for Gesture Short-cuts)
Motion-enabled game and application framework
InstantGesture™ iG™ gesture recognition
Location based services, points of interest, and dead reckoning
Handset and portable gaming
Motion-based game controllers
3D remote controls for Internet connected DTVs and set top boxes, 3D mice
Wearable sensors for health, fitness and sports
Toys
The triple-axis MEMS gyroscope in the MPU-60X0 includes a wide range of features:
Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes) with a user-programmable full-
scale range of ±250, ±500, ±1000, and ±2000°/sec
External sync signal connected to the FSYNC pin supports image, video and GPS synchronization
Integrated 16-bit ADCs enable simultaneous sampling of gyros
Enhanced bias and sensitivity temperature stability reduces the need for user calibration
Improved low-frequency noise performance
Digitally-programmable low-pass filter
Gyroscope operating current: 3.6mA
Standby current: 5µA
Factory calibrated sensitivity scale factor
User self-test
5.2 Accelerometer Features
The triple-axis MEMS accelerometer in MPU-60X0 includes a wide range of features:
Digital-output triple-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g and
±16g
Integrated 16-bit ADCs enable simultaneous sampling of accelerometers while requiring no external
multiplexer
Accelerometer normal operating current: 500µA
Low power accelerometer mode current: 10µA at 1.25Hz, 20µA at 5Hz, 60µA at 20Hz, 110µA at
40Hz
Orientation detection and signaling
Tap detection
User-programmable interrupts
High-G interrupt
User self-test
5.3 Additional Features
The MPU-60X0 includes the following additional features:
9-Axis MotionFusion by the on-chip Digital Motion Processor (DMP)
Auxiliary master I2C bus for reading data from external sensors (e.g., magnetometer)
3.9mA operating current when all 6 motion sensing axes and the DMP are enabled
VDD supply voltage range of 2.375V-3.46V
Flexible VLOGIC reference voltage supports multiple I2C interface voltages (MPU-6050 only)
Smallest and thinnest QFN package for portable devices: 4x4x0.9mm
Minimal cross-axis sensitivity between the accelerometer and gyroscope axes
1024 byte FIFO buffer reduces power consumption by allowing host processor to read the data in
bursts and then go into a low-power mode as the MPU collects more data
Digital-output temperature sensor
User-programmable digital filters for gyroscope, accelerometer, and temp sensor
10,000 g shock tolerant
400kHz Fast Mode I2C for communicating with all registers
1MHz SPI serial interface for communicating with all registers (MPU-6000 only)
20MHz SPI serial interface for reading sensor and interrupt registers (MPU-6000 only)
MEMS structure hermetically sealed and bonded at wafer level
RoHS and Green compliant
5.4 MotionProcessing
Internal Digital Motion Processing™ (DMP™) engine supports 3D MotionProcessing and gesture
recognition algorithms
The MPU-60X0 collects gyroscope and accelerometer data while synchronizing data sampling at a
user defined rate. The total dataset obtained by the MPU-60X0 includes 3-Axis gyroscope data, 3Axis accelerometer data, and temperature data. The MPU’s calculated output to the system
processor can also include heading data from a digital 3-axis third party magnetometer.
The FIFO buffers the complete data set, reducing timing requirements on the system processor by
allowing the processor burst read the FIFO data. After burst reading the FIFO data, the system
processor can save power by entering a low-power sleep mode while the MPU collects more data.
Programmable interrupt supports features such as gesture recognition, panning, zooming, scrolling,
tap detection, and shake detection
Digitally-programmable low-pass filters
Low-power pedometer functionality allows the host processor to sleep while the DMP maintains the
step count.
5.5 Clocking
On-chip timing generator ±1% frequency variation over full temperature range
Optional external clock inputs of 32.768kHz or 19.2MHz