Intersil RFG40N10LE, RFP40N10LE Datasheet

RFG40N10LE, RFP40N10LE, RF1S40N10LESM
Data Sheet October 1999 File Number 4061.5
40A, 100V, 0.040 Ohm, Logic Level N-Channel Power MOSFETs
Formerly developmental type TA49163.
Ordering Information
PART NUMBER PACKAGE BRAND
RFG40N10LE TO-247 FG40N10L RFP40N10LE TO-220AB FP40N10L RF1S40N10LESM TO-263AB F40N10LE
NOTE: When ordering, use the entire partnumber.Addthe suffix, 9A, to obtain the TO-263AB variant in tape and reel, i.e. RF1S40N10LESM9A.
Features
• 40A, 100V
•r
DS(ON)
• Temperature Compensating PSPICE
= 0.040
®
Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
o
C Operating Temperature
• 175
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
Packaging
DRAIN
(FLANGE)
JEDEC STYLE TO-247 JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
JEDEC TO-263AB
DRAIN
GATE
SOURCE
(FLANGE)
SOURCE
DRAIN
GATE
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
RFG40N10LE, RFP40N10LE, RF1S40N10LESM
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RFG40N10LE, RFP40N10LE,
RF1S40N10LESM UNITS
Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS= 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Single Pulse Avalanche Energy Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Power Dissipation (Figure 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DSS
DGR
GS
DM
AS
D
Refer to Peak Current Curve
D
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
100 V 100 V ±10 V
40
Refer to UIS Curve
150
1.00
-55 to 175
300 260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V
GS(TH)VGS
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)ID
Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t Total Gate Charge Q
g(TOT)VGS
Gate Charge at 5V Q Threshold Gate Charge Q
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance Junction-to-Case R Thermal Resistance Junction-to-Ambient R
DSSID
DSS
GSS
ON
r
f
OFF
g(5)
g(TH)
ISS OSS RSS
θJC
θJA
= 250µA, VGS = 0V (Figure 13) 100 - - V
= VDS, ID = 250µA (Figure 12) 1 - 3 V
VDS = 95V, VGS = 0V - - 1 µA
= 90V, VGS = 0V, TC = 150oC - - 250 µA
V
DS
VGS = ±10V - - 10 µA
= 40A, VGS = 5V - - 0.040
VDD = 50V, ID = 40A, RL = 1.25, VGS = 5V, RGS = 2.5 (Figures 10, 18, 19)
- - 200 ns
-22-ns
- 140 - ns
-70-ns
-65-ns
- - 165 ns
= 0V to 10V VDD = 80V, VGS = 0V to 5V - 85 105 nC VGS = 0V to 1V - 3 4 nC
ID = 40A, RL = 2.0 (Figures 20, 21)
VDS = 25V, VGS = 0V, f = 1MHz (Figure 14)
- 145 180 nC
- 3000 - pF
- 500 - pF
- 200 - pF All Packages - - 1.0 TO-247 - - 30 TO-220AB and TO-263AB - - 80
o o o
C/W C/W C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
SD
Diode Reverse Recovery Time t
NOTES:
2. Pulse test: pulse width 80µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
2
ISD = 40A - - 1.5 V ISD = 40A, dISD/dt = 100A/µs - - 205 ns
rr
RFG40N10LE, RFP40N10LE, RF1S40N10LESM
Typical Performance Curves Unless Otherwise Specified
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
2
1
0.5
0.2
0.1
THERMAL IMPEDANCE
0.01 10
0.1
0.05
0.02
0.01
-5
SINGLE PULSE
10
-4
-3
10
t, RECTANGULAR PULSE DURATION (s)
, NORMALIZED
θJC
Z
50
40
30
20
, DRAIN CURRENT (A)
D
I
10
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
t
1
t
NOTES: DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-2
10
-1
10
2
1/t2
x R
θJC
0
10
θJC
+ T
175
C
1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
100
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
1 10 100
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25oC
T
= 175oC
J
100µs
1ms
10ms
200
500
100
THERMAL IMPEDANCE MAY LIMIT CURRENT IN THIS REGION
, PEAK CURRENT CAPABILITY (A)
DM
I
10
-5
10
TC = 25oC
-4
10
VGS = 10V VGS = 5V
-3
10
t, PULSE WIDTH (s)
FOR TEMPERATURES ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
175 T

II
=
-----------------------

25

-2
10
-1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
3
150
C
0
10
1
10
RFG40N10LE, RFP40N10LE, RF1S40N10LESM
Typical Performance Curves Unless Otherwise Specified (Continued)
500
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0 t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
100
10
, AVALANCHE CURRENT (A)
AS
I
1
0.001 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms)
STARTING TJ = 150oC
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
80
VDD= 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
60
40
20
, DRAIN TO SOURCE CURRENT (A)
DS(ON)
I
0
0 3.0 4.5 6.01.5
VGS, GATE TO SOURCE VOLTAGE (V)
-55oC
25oC
175oC
80
60
40
, DRAIN CURRENT (A)
20
D
I
0
0 1.5 3.0 4.5 6.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX T
C
V V
VGS = 4V
= 25oC
GS GS
= 10V = 5V
VGS = 2.5V
FIGURE 7. SATURATION CHARACTERISTICS
100
75
50
, DRAIN TO SOURCE
25
ON RESISTANCE (m)
DS(ON)
r
0
ID = 10A
ID = 20A
PULSE DURATION = 80µs, VDD= 15V DUTY CYCLE = 0.5% MAX.
2.0
3.0
, GATE TO SOURCE VOLTAGE (V)
V
GS
ID = 40A
3.5 4.5 5.0
ID = 80A
4.02.5
VGS = 3V
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
700
VDD = 50V, ID = 40A, RL= 1.25
600
500
400
300
200
SWITCHING TIME (ns)
100
0
10
RGS, GATE TO SOURCE RESISTANCE ()
t
d(OFF)
t
r
t
f
t
d(ON)
20 30 40 500
2.50 PULSE DURATION = 80µs, DUTY CYCLE = 0.5% MAX.
2.00
1.50
1.00
ON RESISTANCE
0.50
NORMALIZED DRAIN TO SOURCE
0
-80 -40 0 40 80 120 160
ID = 40AVGS = 5V,
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4
200
RFG40N10LE, RFP40N10LE, RF1S40N10LESM
Typical Performance Curves Unless Otherwise Specified (Continued)
1.50 VGS = VDS,
1.25
1.00
NORMALIZED GATE
0.75
THRESHOLD VOLTAGE
0.50
-80 -40 0 40 80 120 160
= 250µA
I
D
TJ, JUNCTION TEMPERATURE (oC)
200
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
3500
C
C C
ISS
OSS
RSS
2800
VGS = 0V, f = 1MHz
= CGS + C
C
2100
1400
C, CAPACITANCE (pF)
700
0
0 5 10 15 20 25
VDS, DRAIN TO SOURCE VOLTAGE (V)
C C
ISS RSS OSS
= C
CDS + C
GD
GD
GD
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
1.50 ID = 250µA
1.25
1.00
0.75
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.50
-80
-40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC)
160
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
100
75
50
25
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
V
= BV
DD
I
GREF()
--------------------- -
20
I
G ACT()
DSS
RL = 2.5 I
= 1.7mA
G(REF)
V
= 5V
GS
PLATEAU VOLTAGES IN DESCENDING ORDER:
= BV
V
DD
VDD = 0.75 BV VDD = 0.50 BV VDD = 0.25 BV
DSS
DSS DSS DSS
t, TIME (µs)
VDD = BV
I
GREF()
--------------------- -
80
I
G ACT()
5.00
DSS
3.75
2.50
1.25
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE15. SWITCHING WAVEFORMSFORCONSTANTGATE
CURRENT
200
, GATE TO SOURCE VOLTAGE (V)
GS
V
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
t
0V
P
AS
R
G
DUT
I
AS
0.01
+
V
DD
-
0
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
5
t
P
I
AS
t
AV
V
DS
V
DD
RFG40N10LE, RFP40N10LE, RF1S40N10LESM
Test Circuits and Waveforms (Continued)
t
ON
t
DS
GS
10%
d(ON)
90%
50%
10%
t
r
PULSE WIDTH
V
DS
V
R
DUT
L
+
V
DD
-
0
V
0
V
GS
R
GS
V
GS
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 2V
0
Q
g(TOT)
V
DS
Q
OR Q
g(10)
V
GS
VGS= 1V FOR
g(5)
V
GS
VGS= 5V FOR
2
L
DEVICES
L2 DEVICES
Q
g(TH)
t
d(OFF)
90%
= 10V
t
OFF
t
f
10%
50%
VGS= 20V
V
= 10V FOR
GS
L2 DEVICES
90%
I
g(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS
6
RFG40N10LE, RFP40N10LE, RF1S40N10LESM
PSPICE Electrical Model
SUBCKT 40N10LE 2 1 3 ; rev 8/15/95
CA 12 8 3.50e-9 CB 15 14 3.50e-9 CIN 6 8 1.70e-9
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 120.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 1.00e-9
LGATE 1 9 5.17e-9 LSOURCE 3 7 2.13e-9
GATE
1
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.04e-2 RGATE 9 20 2.15 RLDRAIN 2 5 10 RLGATE 1 9 51.7 RLSOURCE 3 7 21.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 4.85e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD
LGATE
RLGATE
RGATE
9
CA
ESG
EVTEMP +
18 22
20
S1A
12
13
8
S1B
EGS EDS
DPLCAP
10
RSLC2
-
6 8
EVTHRES
+
+
6
-
S2A
14 13
S2B
13
+
+
6 8
-
-
5
RSLC1
51
+
5
ESLC
51
-
50 RDRAIN
16
21
-
19
8
MMED
MSTRO
CIN
15
CB
8
14
+
5 8
-
DBREAK
11
+
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
17 18
-
7
-
+
22
S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*79),3.5))} .MODEL DBODYMOD D (IS = 1.96e-12 RS = 3.87e-3 TRS1 = 9.93e-4 TRS2 = 4.97e-6 CJO = 1.53e-9 TT = 7.41e-8 M = 0.50)
.MODEL DBREAKMOD D (RS = 3.12e-1 TRS1 = 1.07e-3 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 1.97e-9 IS = 1e-30 M = 0.87) .MODEL MMEDMOD NMOS (VTO = 1.73 KP = 2.80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.15) .MODEL MSTROMOD NMOS (VTO = 2.04 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.50 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 21.5 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.74e-4 TC2 = -3.71e-7) .MODEL RDRAINMOD RES (TC1 = 9.71e-3 TC2 = 2.90e-5) .MODEL RSLCMOD RES (TC1 = 2.17e-3 TC2 = 1.27e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.08e-3 TC2 = -6.82e-6) .MODEL RVTEMPMOD RES (TC1 = -1.52e-3 TC2 = -1.21e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.00 VOFF= -1.50) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.50 VOFF= -6.00) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.50 VOFF= 0.0) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.0 VOFF= -0.50)
.ENDS
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
RVTEMP 19
VBAT
DRAIN
2
SOURCE
3
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
RFG40N10LE, RFP40N10LE, RF1S40N10LESM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.inter sil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
8
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...