RFD8P06LE, RFD8P06LESM, RFP8P06LE
Data Sheet July 1999 File Number
8A, 60V, 0.300 Ohm, ESD Rated, Logic
Level, P-Channel Power MOSFET
These products are P-Channel power MOSFETs
manufactured using the MegaFET process. This process,
which uses feature sizes approaching those of LSI circuits,
gives optimum utilization of silicon, resulting in outstanding
performance. They were designed for use in applications
such as switching regulators, switching converters, motor
drivers, and relay drivers. These transistors can be operated
directly from integrated circuits.
Formerly developmental type TA49203.
Ordering Information
PART NUMBER PACKAGE BRAND
RFD8P06LE TO-251AA F8P6LE
RFD8P06LESM TO-252AA F8P6LE
RFP8P06LE TO-220AB FP8P06LE
NOTE: When ordering, usethe entire part number .Add thesuffix9A to
obtain the TO-252AA variant in the tape and reel, i.e.,
RFD8P06LESM9A.
Features
• 8A, 60V
DS(ON)
= 0.300Ω
•r
• 2kV ESD Protected
• Temperature Compensating PSPICE
• PSPICE Thermal Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
o
C Operating Temperature
• 175
Symbol
D
G
S
®
Model
4273.1
Packaging
DRAIN (FLANGE)
JEDEC TO-251AA JEDEC TO-252AA
SOURCE
DRAIN
GATE
GATE
SOURCE
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
DRAIN (FLANGE)
7-11
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
RFD8P06LE, RFD8P06LESM, RFP8P06LE
Absolute Maximum Ratings T
= 25oC Unless Otherwise Specified
C
RFD8P06LE, RFD8P06LESM,
RFP8P06LE UNITS
Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS = 20kΩ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DS
DGR
-60 V
-60 V
Continuous Drain Current
TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
D
D
DM
GS
D
-8
-6.3
See Figure 5
±10 V
48 W
A
A
Dissipation Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.32 W/oC
Single Pulse Avalanche Energy Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, T
STG
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
AS
L
See Figure 6
-55 to 175
300
o
C
o
C
(0.063in (1.6mm) from case for 10s)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV
Gate Threshold Voltage V
Zero Gate Voltage Drain Current I
DSSID
GS(TH)VGS
DSS
= 250µA, VGS = 0V (Figure 11) -60 - - V
= VDS, ID = 250µA (Figure 12) -1 - -2 V
VDS =- 60V, VGS = 0V TJ = 25oC---1µA
TJ = 150oC - - -50 µA
Gate to Source Leakage Current I
On Resistance (Note 1) r
GSS
DS(ON)ID
VGS = ±10V - - ±10 µA
= 8A, VGS = -5V (Figure 9, 10) - - 0.300 Ω
ID = 8A, VGS = -4.5V (Figure 9, 10) - - 0.330 Ω
Turn-On Time t
Turn-On Delay Time t
d(ON)
Rise Time t
Turn-Off Delay Time t
d(OFF)
Fall Time t
Turn-Off Time t
Total Gate Charge Q
g(TOT)VGS
Gate Charge at -5V Q
Threshold Gate Charge Q
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Thermal Resistance Junction to Case R
Thermal Resistance Junction to Ambient R
OFF
g(TH)VGS
ON
r
VDD = -30V, I
(Figure 13)
≅8A, R
D
= 9.1Ω, RL = 3.75Ω
GS
- - 90 ns
-10- ns
-50- ns
-30- ns
f
-20- ns
- - 75 ns
= 0 to -10V VDD = -48V, I
g(-5)VGS
= 0 to -5V - 15 18 nC
= 0 to -1V - 1.2 1.5 nC
VDS =- 25V, VGS = 0V, f = 1MHz
ISS
(Figure 15)
OSS
RSS
θJC
TO-251AA, TO-252AA - - 100oC/W
θJA
RL = 6Ω
I
= -0.2mA
g(REF)
(Figure 14)
D
≅8A,
-2530nC
- 675 - pF
- 175 - pF
-50-pF
- - 3.125oC/W
TO-220AB 80oC/W
Source to Drain Diode Specifications T
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage (Note 1) V
Reverse Recovery Time t
NOTE:
2. Pulse Test: Pulse width ≤300µs, Duty Cycle ≤2%.
7-12
= 25oC Unless Otherwise Specified
C
TJ = 25oC, ISD =- 8A, VGS = 0V - - -1.5 V
SD
TJ = 25oC, ISD =- 8A, dISD/dt = 100A/µs - - 125 ns
rr
RFD8P06LE, RFD8P06LESM, RFP8P06LE
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
125
FIGURE 1. NORMALIZEDPOWER DISSIPATION vs CASE
TEMPERATURE
2.0
1.0
0.5
150
-10
-8
-6
-4
, DRAIN CURRENT (A)
D
I
-2
0
25 50 75 100
TC, CASE TEMPERATURE (oC)
125
150
FIGURE 2. MAXIMUMCONTINUOUSDRAIN CURRENT vs
CASE TEMPERATURE
175
0.2
0.1
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.05
0.02
0.01
SINGLE PULSE
0.01
-5
10
-100
TC = 25oC, TJ = MAX RATED
-10
-1
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
-0.1
-1 -10
DS(ON)
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
NOTES:DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
-2
10
-1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
2
-10
TC = 25oC
FOR TEMPERATURES ABOVE 25oC
DERATE PEAK CURRENT
CAPABILITY AS FOLLOWS:
-3
10
t, PULSE WIDTH (ms)
V
DS(MAX)
= -60V
100µs
1ms
10ms
100ms
DC
-100
VGS = -10V
VGS = -5V
, PEAK CURRENT (A)
DM
-10
I
-5
10
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
-5
-4
10
II
-2
10
P
DM
t
1
t
2
xR
θJC
θJC
0
10
175 TC–
=
----------------------- -
25
150
-1
10
1/t2
10
+ T
C
1
10
0
1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
7-13