Intersil RFD3055LE, RFD3055LESM Datasheet

RFD3055LE, RFD3055LESM, RFP3055LE
Data Sheet November 1999
11A, 60V, 0.107 Ohm, Logic Level, N-Channel Power MOSFETs
These N-Channel enhancement-mode powerMOSFETsare manufactured using the latest manufacturing process technology. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits.
Formerly developmental type TA49158.
Ordering Information
PART NUMBER PACKAGE BRAND
RFD3055LE TO-251AA F3055L RFD3055LESM TO-252AA F3055L RFP3055LE TO-220AB FP3055LE
NOTE: Whenordering,use theentire part number.Add thesuffix, 9A, to obtain the TO-252 variant in tape and reel, e.g. RFD3055LESM9A.
File Number 4044.3
Features
• 11A, 60V
DS(ON)
= 0.107
®
Model
•r
• Temperature Compensating PSPICE
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
Packaging
DRAIN (FLANGE)
JEDEC TO-220AB JEDEC TO-251AA
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
JEDEC TO-252AA
DRAIN (FLANGE)
GATE
SOURCE
SOURCE
DRAIN
GATE
6-1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
1-888-INTERSIL or 407-727-9207
| Copyright © Intersil Corporation 1999
RFD3055LE, RFD3055LESM, RFP3055LE
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RFD3055LE, RFD3055LESM,
RFP3055LE UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Single Pulse Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
DSS
DGR
GS
DM
AS
D
Refer to Peak Current Curve
D
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
60 V 60 V
±16 V
11
Refer to UIS Curve
38
0.25
-55 to 175
300 260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V Zero Gate Voltage Drain Current I
DSS
GS(TH)
DSS
ID = 250µA, VGS = 0V 60 - - V VGS = VDS, ID = 250µA1-3V VDS = 55V, VGS = 0V - - 1 µA
VDS = 50V, VGS = 0V, TC = 150oC - - 250 µA Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)ID
Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t Total Gate Charge Q
g(TOT)
Gate Charge at 5V Q Threshold Gate Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
GSS
ON
r
f
OFF
g(5)
g(TH)
ISS OSS RSS
θJC θJA
VGS = ±16V - - ±100 nA
= 8A, VGS = 5V (Figure 11) - - 0.107
V
30V, I
DD
VGS = 4.5V, RGS = 32 (Figures 10, 18, 19)
= 8A,
D
- - 170 ns
-8- ns
- 105 - ns
-22- ns
-39- ns
- - 92 ns
VGS = 0V to 10V VDD = 30V, ID = 8A,
I
= 1.0mA
VGS = 0V to 5V - 5.2 6.2 nC
g(REF)
(Figures 20, 21)
- 9.4 11.3 nC
VGS = 0V to 1V - 0.36 0.43 nC VDS = 25V, VGS = 0V, f = 1MHz
(Figure 14)
- 350 - pF
- 105 - pF
-23- pF
- - 3.94oC/W TO-220AB - - 62 TO-251AA, TO-252AA - - 100
o o
C/W C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V Diode Reverse Recovery Time t
SD
rr
NOTES:
2. Pulse Test: Pulse Width 300ms, Duty Cycle 2%.
3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current Capability Curve (Figure 5).
6-2
ISD = 8A - 1.25 V ISD = 8A, dISD/dt = 100A/µs - 66 ns
RFD3055LE, RFD3055LESM, RFP3055LE
Typical Performance Curves Unless Otherwise Specified
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
25 50 75 100
0
0
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZEDPOWER DISSIPATIONvs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
SINGLE PULSE
0.01
-5
10
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
175
15
VGS= 10V
10
VGS= 4.5V
5
, DRAIN CURRENT (A)
D
I
0
25 50 75 100 125 150 175
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUMCONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
NOTES: DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-2
10
-1
10
θJC
10
1/t2
0
x R
θJC
t
1
+ T
t
2
C
1
10
FIGURE 3. NORMALIZED TRANSIENT THERMAL IMPEDANCE
100
10
OPERATION IN THIS AREA MAY BE
1
LIMITED BY r
, DRAIN CURRENT (A)
D
I
SINGLE PULSE
TJ = MAX RATED
DS(ON)
T
= 25oC
C
0.1 1 10 100
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
100µs
1ms
10ms
200
200
100
, PEAK CURRENT (A)
DM
I
10
10
VGS = 5V
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
-5
-4
10
TC = 25oC FOR TEMPERATURES
ABOVE 25 CURRENT AS FOLLOWS:
I = I
-3
10
-2
10
t, PULSE WIDTH (s)
o
25
-1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
6-3
C DERATE PEAK
175 - T
C
150
0
10
1
10
RFD3055LE, RFD3055LESM, RFP3055LE
Typical Performance Curves Unless Otherwise Specified (Continued)
100
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0 t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
10
STARTING TJ = 150oC
, AVALANCHE CURRENT (A)
AS
I
1
0.001 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Intersil Application Notes AN9321 and AN9322
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
15
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 15V
V
DD
12
9
15
12
, DRAIN CURRENT (A)
D
I
= 10V
V
GS
VGS = 5V
9
6
PULSE DURATION = 80µs
3
TC = 25oC
0
01234
VDS, DRAIN TO SOURCE VOLTAGE (V)
DUTY CYCLE = 0.5% MAX
VGS = 4V
VGS = 3.5V
VGS = 3V
FIGURE 7. SATURATION CHARACTERISTICS
150
120
I
D
= 3A
I
D
= 11A
= 5A
I
D
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 25oC
T
C
6
TJ = 25oC
DRAIN CURRENT (A)
3
D,
I
TJ = 175oC
0
2345
TJ = -55oC
VGS, GATE TO SOURCE VOLTAGE (V)
, DRAIN TO SOURCE
90
ON RESISTANCE (m)
DS(ON)
r
60
246810
, GATE TO SOURCE VOLTAGE (V)
V
GS
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
150
VGS = 4.5V, VDD = 30V, ID = 8A
t
r
100
t
50
SWITCHING TIME (ns)
0
0 1020304050
RGS, GATE TO SOURCE RESISTANCE ()
t
d(OFF)
t
d(ON)
f
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
VGS = 10V, ID = 11A
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
6-4
RFD3055LE, RFD3055LESM, RFP3055LE
Typical Performance Curves Unless Otherwise Specified (Continued)
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
-80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
FIGURE 12. NORMALIZEDGATETHRESHOLD VOLTAGEvs
JUNCTION TEMPERATURE
1000
C
= CGS + C
C
CDS+ C
100
C, CAPACITANCE (pF)
10
OSS
VGS= 0V, f = 1MHz
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
GD
ISS
C
RSS
= C
GD
GD
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 200 , JUNCTION TEMPERATURE (oC)
T
J
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VDD = 30V
8
6
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
60
0246810
Qg, GATE CHARGE (nC)
WAVEFORMS IN DESCENDING ORDER:
ID = 11A I
= 5A
D
I
= 3A
D
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 15. NORMALIZEDSWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
t
0V
P
AS
R
G
DUT
I
AS
0.01
+
V
DD
-
0
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
6-5
t
P
I
AS
t
AV
V
DS
V
DD
RFD3055LE, RFD3055LESM, RFP3055LE
Test Circuits and Waveforms (Continued)
t
ON
t
DS
GS
10%
d(ON)
90%
50%
t
10%
r
PULSE WIDTH
V
DS
V
R
DUT
L
+
V
DD
-
0
V
0
V
GS
R
GS
V
GS
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
FIGURE 18. SWITCHING TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 2V
0
Q
g(TOT)
V
DS
VGS= 20V
V
Q
OR Q
g(10)
V
GS
VGS= 1V FOR
g(5)
V
= 10V
GS
VGS= 5V FOR
2
L
DEVICES
= 10V FOR
GS
L2 DEVICES
L2 DEVICES
Q
g(TH)
I
g(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS
6-6
RFD3055LE, RFD3055LESM, RFP3055LE
PSPICE Electrical Model
.SUBCKT RFD3055LE 2 1 3 ; rev 1/30/95
CA 12 8 3.9e-9 CB 15 14 4.9e-9 CIN 6 8 3.25e-10
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 67.8 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 1.0e-9
LGATE 1 9 5.42e-9 LSOURCE 3 7 2.57e-9
GATE
1
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.7e-2 RGATE 9 20 3.37 RLDRAIN 2 5 10 RLGATE 1 9 54.2 RLSOURCE 3 7 25.7 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.50e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD
LGATE
RLGATE
RGATE
9
CA
ESG
EVTEMP +
18 22
20
S1A
12
13
8
S1B
EGS EDS
DPLCAP
10
RSLC2
-
6 8
EVTHRES
+
+
6
-
S2A
14 13
S2B
13
+
+
6 8
-
-
5
RSLC1
51
+
5
ESLC
51
-
50 RDRAIN
16
21
-
19
8
MMED
MSTRO
CIN
15
CB
8
14
+
5 8
-
DBREAK
11
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17 18
-
7
RLSOURCE
RVTEMP 19
-
+
22
S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*30),3))} .MODEL DBODYMOD D (IS = 1.75e-13 RS = 1.75e-2 TRS1 = 1e-4 TRS2 = 5e-6 CJO = 5.9e-10 TT = 5.45e-8 N = 1.03 M = 0.6)
.MODEL DBREAKMOD D (RS = 6.50e-1 TRS1 = 1.25e-4 TRS2 = 1.34e-6) .MODEL DPLCAPMOD D (CJO = 3.21e-10 IS = 1e-30 N = 10 M = 0.81) .MODEL MMEDMOD NMOS (VTO = 2.02 KP = .83 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.37) .MODEL MSTROMOD NMOS (VTO = 2.39 KP = 14 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.78 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33.7 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.06e-3 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 1.23e-2 TC2 = 2.58e-5) .MODEL RSLCMOD RES (TC1 = 0 TC2 = 0) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.19e-3 TC2 = -4.97e-6) .MODEL RVTEMPMOD RES (TC1 = -1.6e-3 TC2 = 1e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4 VOFF= -2.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF= -4) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= 0) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF= -0.5)
.ENDS
LDRAIN
RLDRAIN
DBODY
LSOURCE
VBAT
DRAIN
2
SOURCE
3
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
6-7
RFD3055LE, RFD3055LESM, RFP3055LE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only.Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believ ed to be accurate and reliable. Howe ver, no responsibility is assumed by Intersil or its subsidiaries forits use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation andits products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
6-8
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...