Intersil ISL95839HRTZ Schematic [ru]

ISL6208B
DRIVER
ISL95839
VR2
Vin
VR1
Vin
Vin
Vin
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
30 36 42 48 54 60 66
I
OUT
(A)
V
OUT
(V)
0 6 12 18 24
VIN = 19V
VIN = 12V
VIN = 8V
S
N
G
I
S
E
D
W
E
N
R
FO
D
E
D
N
E
M
M
O
C
E
R
T
O
N
O
C
E
R
O
c
1
N ont
8
-
ur
o
t
c
a
TE
N
I
-
8
8
M
R
N
E
M
hn
c
e
T
L
I
S
or
R
D
E
D
S
l
a
c
i
w
w
w
C
A
L
P
E
t
or
pp
u
i
s
r
e
t
n
i
.
T
N
E
M
E
e
C
c
.
l
t
a
r
e
t
n
c
s
t
/
m
o
Dual 3+1 PWM Controller with Current Monitor for IMVP-7/VR12™ CPUs
ISL95839
The ISL95839 Pulse Width Modulation (PWM) controller IC provides a complete solution for IMVP-7/VR12™ compliant microprocessor and graphic processor core power supplies. It provides the control and protection for two Voltage Regulators (VRs). The first VR, typical for V drivers and can operate in 3-, 2- or 1-phase configurations. The second VR, typical for Graphics, incorporates 1 integrated driver. The two VRs share a serial control bus to communicate with the CPU and achieve lower cost and smaller board area compared with the two-chip approach.
Both VRs utilize Intersil’s Robust Ripple Regulator R3 Technology™. The R3 modulator has numerous advantages compared to traditional modulators, including faster transient response, variable switching frequency during load transients, and improved light load efficiency due to its ability to automatically change switching frequency.
The ISL95839 has several other key features. Both outputs support either DCR current sensing with a single NTC thermistor for DCR temperature compensation, or more precise resistor current sensing if desired. Both outputs come with remote voltage sense, programmable V I
and switching frequency, adjustable overcurrent
MAX,
protection and separate Power-Good signals.
, incorporates 2 integrated
core
voltage,
BOOT
Features
• Serial data bus
•Dual outputs:
- Configurable 3-, 2- or 1-phase for the 1st output using two integrated gate drivers
- 2nd output using an integrated gate driver
•R3™ Modulator
- Excellent transient response
- High light load efficiency
• 0.5% system accuracy over-temperature
• Supports multiple current sensing methods
- Lossless inductor DCR current sensing
- Precision resistor current sensing
• Differential remote voltage sensing
•Programmable V
• Resistor programmable I outputs
• Output current monitor (IMON and IMONG)
• Adaptive body diode conduction time reduction
voltage at start-up
BOOT
MAX
, switching frequency for both
Applications
• IMVP-7/VR12 compliant computers
May 9, 2013 FN8315.0
FIGURE 1. SIMPLIFIED APPLICATION CIRCUIT FIGURE 2. LOAD LINE REGULATION
1
Intersil (and design) and R3 Technology™ are trademarks owned by Intersil Corporation or one of its subsidiaries.
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774
All other trademarks mentioned are the property of their respective owners.
|Copyright Intersil Americas LLC 2013. All Rights Reserved
ISL95839
Table of Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Simplified Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Gate Driver Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Multiphase R3™ Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Diode Emulation and Period Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Start-up Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Voltage Regulation and Load Line Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Current Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Differential Voltage Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Phase Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
CCM Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Dynamic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VR_HOT#/ALERT# Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
FB2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Adaptive Body Diode Conduction Time Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Supported Data and Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Key Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Inductor DCR Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Resistor Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Programming Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Slew Rate Compensation Circuit for VID Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Typical Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2
FN8315.0
May 9, 2013
Ordering Information
GND PAD
(BOTTOM)
40 39 38 37 36 35 34 33 32 31
29
30
27
28
25
26
23
24
21
22
11 12 13 14 15 16 17 18 19 20
2
1
4
3
6
5
8
7
10
9
NTCG
SCLK
ALERT#
SDA
VR_HOT#
FB2
NTC
ISEN2
ISEN1
ISUMP
ISUMN
RTN
FB
COMP
UGATE2
LGATE2
PWM3 LGATE1
FBG
COMPG
PGOODG
VR_ON
LGATE1G
PGOOD
PHASE2
VDD
BOOT2
IMON
PHASE1 UGATE1
PHASE1G
RTNG
ISUMNGISEN3
UGATE1G
IMONG
ISUMPG
BOOT1 BOOT1G
VCCP
ISL95839
PART NU MBER
(Notes 1, 2, 3) PART MARKING
ISL95839HRTZ 95839 HRTZ -10 to +100 40 Ld 5x5 TQFN L40.5x5
NOTES:
1. Add “-T*” suffix for tape and reel. Please refer to TB347
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL95839
for details on reel specifications.
TEMP. RANGE
(°C)
PACKAGE
(Pb-Free)
. For more information on MSL please see techbrief TB363.
PKG.
DWG. #
Pin Configuration
ISL95839
(40 LD TQFN)
TOP VIEW
Pin Descriptions
PIN # SYMBOL DESCRIPTION
2 IMONG Output current monitor for VR2.
3 IMON Output current monitor for VR1.
4 NTCG The second thermistor input to VR_HOT# circuit. Use it to monitor VR2 temperature.
5, 6, 7 SCLK, ALERT#,
SDA
8 VR_HOT# Open drain thermal overload output indicator. Can be considered part of communication bus with CPU.
9 FB2 There is a switch between the FB2 pin and the FB pin. The switch is on when VR1 is in 3-phase and 2-phase mode and is off
10 NTC One of the thermistor inputs to VR_HOT# circuit. Use it to monitor VR1 temperature.
11 ISEN3 ISEN3 is the individual current sensing for VR1 phase 3.
Communication bus between the CPU and the VRs.
in 1-phase mode. The components connecting to FB2 are used to adjust the compensation in 1-phase mode to achieve optimum performance for VR1.
3
FN8315.0
May 9, 2013
ISL95839
Pin Descriptions (Continued)
PIN # SYMBOL DESCRIPTION
12 ISEN2 Individual current sensing for VR1 Phase 2. When ISEN2 and PWM3 are both pulled to 5V VDD, the controller will disable VR1
Phases 3 and 2.
13 ISEN1 Individual current sensing for VR1 Phase 1.
14, 15 ISUMP, ISUMN VR1 droop current sense input.
16 RTN VR1 remote voltage sensing return.
17 FB This pin is the inverting input of the error amplifier for VR1.
18 COMP This pin is the output of the error amplifier for VR1. Also, a resistor from this pin to GND programs I
for both VR1 and VR2.
19 PG OO D Po wer -G ood open -dra in ou tput indi cati ng w he n VR 1 i s ab le to supply regulated voltage. Pull up externally with a 680Ω resistor
20 BOOT1 Connect an MLCC capacitor across the BOOT1 and the PHASE1 pins. The boot capacitor is charged through an internal boot
21 UGATE1 Output of VR1 Phase-1 high-side MOSFET gate driver. Connect the UGATE1 pin to the gate of the Phase-1 high-side MOSFET.
22 PHASE1 Current return path for the VR1 Phase-1 high-side MOSFET gate driver. Connect the PHASE1 pin to the node consisting of the
23 LGATE1 Output of VR1 Phase-1 low-side MOSFET gate driver. Connect the LGATE1 pin to the gate of VR1 Phase-1 low-side MOSFET.
24 PWM3 PWM output for VR1 Phase 3. When PWM3 is pulled to 5V V
25 VDD 5V bias power.
26 VCCP Input voltage b ias for the in tern al gate drivers . Connect +5V to th e VCCP pin. Deco uple with at l east 1µF of an MLCC capacitor.
27 LGATE2 Output of VR1 Phase-2 low-side MOSFET gate driver. Connect the LGATE2 pin to the gate of VR1 Phase-2 low-side MOSFET.
28 PHASE2 Current return path for VR1 Phase-2 high-side MOSFET gate driver. Connect the PHASE2 pin to the node consisting of the
29 UGATE2 Output of VR1 Phase-2 high-side MOSFET gate driver. Connect the UGATE2 pin to the gate of VR1 Phase-2 high-side MOSFET.
30 BOOT2 Connect an MLCC capacitor across the BOOT2 and the PHASE2 pins. The boot capacitor is charged through an internal boot
31 BOOT1G Connect an MLCC capacitor across the BOOT1G and the PHASE1G pins. The boot capacitor is charged through an internal
32 UGATE1G Output of VR2 Phase-1 high-side MOSFET gate driver. Connect the UGATE1G pin to the gate of VR2 Phase-1 high-side MOSFET.
33 PHASE1G Current return path for VR2 Phase-1 high-side MOSFET gate driver. Connect the PHASE1G pin to the node consisting of the
34 LGATE1G Output of VR2 Phase-1 low-side MOSFET gate driver. Connect the LGATE1G pin to the gate of VR2 Phase-1 low-side MOSFET.
35 VR_ON Controller enable input. A high level logic signal on this pin enables the controller.
36 PGOODG Power-Good open-drain output indicating when VR2 is able to supply regulated voltage. Pull-up externally with a 680Ω
37 COMPG This pin is the output of the error amplifier for VR2. Also, a resistor from this pin to GND programs I
38 FBG This pin is the inverting input of the error amplifier for VR2.
39 RTNG VR2 remote voltage sensing return.
40, 1 ISUMNG and
ISUMPG
Bottom
Pad
GND Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin. In addition, it is the return path for
to VCCP or 1.9kΩ to 3.3V.
diode connected from the VCCP pin to the BOOT1 pin, each time the PHASE1 pin drops below VCCP minus the voltage dropped across the internal boot diode.
high-side MOSFET source, the low-side MOSFET drain, and the output inductor of VR1 Phase 1.
, the controller will disable VR1 Phase 3.
DD
high-side MOSFET source, the low-side MOSFET drain, and the output inductor of VR1 Phase 2.
diode connected from the VCCP pin to the BOOT2 pin, each time the PHASE2 pin drops below VCCP minus the voltage dropped across the internal boot diode.
boot diode connected from the VCCP pin to the BOOT1G pin, each time the PHASE1G pin drops below VCCP minus the voltage dropped across the internal boot diode.
high-side MOSFET source, the low-side MOSFET drain, and the output inductor of VR2 Phase 1.
resistor to VCCP or 1.9kΩ to 3.3V.
both VR1 and VR2.
VR2 droop current sense input. When ISUMNG is pulled to 5V V
all the low-side MOSFET gate drivers. It should also be used as the thermal pad for heat removal.
, all the communication to VR2 is disabled.
DD
for VR1, and V
MAX
for VR2 and T
MAX
MAX
BOOT
for
4
FN8315.0
May 9, 2013
Block Diagram
RTN
E/A
FB
IDROOP
CURRENT
SENSE
ISUMP
ISUMN
COMP
DRIVER
DRIVER
LGATE1
PHASE1
UGATE1
BOOT1
VCCP
OV FAULT
PGOOD
_
+
_
+
+
+
DRIVER
DRIVER
LGATE2
PHASE2
UGATE2
BOOT2
IBAL FAULT
OC FAULT
PWM3
ISEN3
ISEN2
ISEN1
CURRENT
BALANCING
DIGITAL
INTERFACE
SDA
ALERT#
SCLK
DRIVER
DRIVER
LGATE1G
PHASE1G
UGATE1G
BOOT1G
OV FAULT
PGOODG
OC FAULT
MODE1
DAC1
MODE2
DAC2
TEMP
MONITOR
NTCG
NTC
VR_HOT#
T_MONITOR
IMAX
VBOOT
TMAX
SET (A/D)
PROG
VR_ON
MODE
D/A
A/D IDROOP
IDROOPG
VREADY
RTNG
E/A
FBG
IDROOPG
CURRENT
SENSE
ISUMPG
ISUMNG
COMPG
VR2
MODULATOR
_
+
_
+
+
+
VR1
MODULATOR
FB2
CIRCUIT
VDD
GNDIMON
IMONG
FB2
ISL95839
5
FN8315.0
May 9, 2013
Simplified Application Circuit
FIGURE 3. TYPICAL ISL95839 APPLICATION CIRCUIT USING INDUCTOR DCR SENSING
NTCG
GND
VCCP
+5V
ISL95839
L2
L1
ISEN3
PHASE2
UGATE2
Rsum2
Rsum1
Rn
Cn
Ri
L3
Rsum3
BOOT2
V+5
Vin
LGATE2
ISEN2
PHASE1
UGATE1
BOOT1
LGATE1
PWM3
ISUMP
ISUMN
o
C
Risen2
Risen1
Risen3
ISEN1
Vsumn
Cisen3Cisen2Cisen1
Cvsumn
L4
GT Vcore
IMONG
UGATE1G
Rsum4
Rng
Cng
Rig
BOOT1G
Vin
LGATE1G
IMON
ISUMPG
ISUMNG
o
C
Rimon
Vsumng
Cvsumng
CPU Vcore
PHASE1G
VDD
Rdroop
VR_ON
PGOOD
VSSSENSE
VCCSENSE
Rntc
o
C
FB
VR_ON
COMP
RTN
PGOOD
NTC
Rdroopg
VSSSENSEG
VCCSENSEG
Rntcg
o
C
FBG
COMPG
RTNG
SDA SDA
ALERT# ALERT#
SCLK SCLK
PGOODG PGOODG
VR_HOT# VR_HOT#
RCOMPG
RCOMP
VCC
UGATE
LGATE
PHASE
BOOT
PWM
FCCM
GND
ISL6208
Cimon
Rimong
Cimong
FB2
ISL95839
6
FN8315.0
May 9, 2013
ISL95839
Absolute Maximum Ratings Thermal Information
Supply Voltage, VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V
Battery Voltage, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +28V
Boot Voltage (BOOT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +33V
Boot-to-Phase Voltage
(BOOT-PHASE) -0.3V to +7V(DC) . . . . . . . . . . . . . . . .-0.3V to +9V (<10ns)
Phase Voltage (PHASE) . . . . . . . . . . . . . . . . -7V (<20ns Pulse Width, 10µJ)
UGATE Voltage (UGATE) . . . . . . . . . . . . . . . . . . . PHASE - 0.3V (DC) to BOOT
. . . . . . . . . . . . . . . . . . . . PHASE - 5V (<20ns Pulse Width, 10µJ) to BOOT
LGATE Voltage . . . . . . . . . . . . -2.5V (<20ns Pulse Width, 5µJ) to VDD+0.3V
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (VDD +0.3V)
Open Drain Outputs, PGOOD, VR_HOT#, ALERT#. . . . . . . . . . -0.3V to +7V
ESD Rating
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . . . 2kV
Machine Model (Tested per JESD22-A115-A) . . . . . . . . . . . . . . . . . . 200V
Charged Device Model (Tested per JESD22-C101A) . . . . . . . . . . . . . . 1k
Latch Up (Tested per JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . 100mA
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTES:
4.
is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech
JA
Brief TB379
5. For
.
, the “case temp” location is the center of the exposed metal pad on the package underside.
JC
Thermal Resistance (Typical)
40 Ld TQFN Package (Notes 4, 5) . . . . . . . 32 4
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
(°C/W) JC (°C/W)
JA
Recommended Operating Conditions
Supply Voltage, VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5V ±5%
Battery Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4.75V to 25V
Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +100°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +125°C
Electrical Specifications Operating Conditions: V
apply over the operating temperature range, -10°C to +100°C
PARAMETER SYMBOL TEST CONDITIONS
= 5V, TA = -10°C to +100°C, fSW = 300kHz, unless otherwise noted. Boldface limits
DD
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
INPUT POWER SUPPLY
+5V Supply Current I
VDD
VR_ON = 1V 6.4 8.0 mA
VR_ON = 0V 1 µA
POWER-ON-RESET THRESHOLDS
VDD Power-On-Reset Threshold VDDPOR
VDDPOR
VIN Power-On-Reset Threshold VINPOR 4.40 4.75 V
VDD rising 4.35 4.5 V
r
VDD falling 4.00 4.15 V
f
SYSTEM AND REFERENCES
System Accuracy %Error (V
Internal V
Maximum Output Voltage V
Minimum Output Voltage V
BOOT
OUT(max)
OUT(min)
) No load; closed loop, active mode range,
OUT
VID = 0.75V to 1.52V, -0.5 +0.5 %
VID = 0.5V to 0.745V -6 +6 mV
VID = 0.25V to 0.495V -10 +10 mV
1.0945 1.100 1.1055 V
VID = [11111111] 1.52 V
VID = [00000001] 0.25 V
CHANNEL FREQUENCY
300kHz Configuration fSW_300k 277 300 323 kHz
350kHz Configuration f
400kHz Configuration f
450kHz Configuration f
AMPLIFIERS
Current-Sense Amplifier Input Offset I
Error Amp DC Gain A
Error Amp Gain-Bandwidth Product GBW C
_350k 324 350 376 kHz
SW
_400k 370 400 430 kHz
SW
_450k 412 445 478 kHz
SW
= 0A -0.2 +0.2 mV
FB
V0
= 20pF 18 MHz
L
90 dB
7
FN8315.0
May 9, 2013
ISL95839
Electrical Specifications Operating Conditions: V
= 5V, TA = -10°C to +100°C, fSW = 300kHz, unless otherwise noted. Boldface limits
DD
apply over the operating temperature range, -10°C to +100°C (Continued)
PARAMETER SYMBOL TEST CONDITIONS
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
ISEN
Imbalance Voltage Maximum of ISENs - Minimum of ISENs 1 mV
Input Bias Current 20 nA
POWER-GOOD AND PROTECTION MONITORS
I
PGOOD Low Voltage V
PGOOD Leakage Current I
OL
OH
= 4mA 0.15 0.4 V
PGOOD
PGOOD = 3.3V 1 µA
PGOOD Delay tpgd 2.6 ms
ALERT# Low 7 12 Ω
VR_HOT# Low 7 12 Ω
ALERT# Leakage Current 1 µA
VR_HOT# Leakage Current 1 µA
CURRENT MONITOR
IMON and IMONG Output Current I
IMON
ISUM- pin current = 40µA 9.7 10 10.3 µA
ISUM- pin current = 20µA 4.8 5 5.2 µA
ISUM- pin current = 4µA 0.875 1 1.125 µA
Alert Trip Voltage V
I
CCMAX
Alert Reset Voltage Falling 1.14 V
I
CCMAX
IMONMAX
Rising 1.2 V
IMON Voltage Clamp 1.8 V
GATE DRIVER
UGATE Pull-Up Resistance R
UGATE Source Current I
UGATE Sink Resistance R
UGATE Sink Current I
LGATE Pull-Up Resistance R
LGATE Source Current I
LGATE Sink Resistance R
LGATE Sink Current I
UGATE to LGATE De ad ti me t
LGATE to UGATE De ad ti me t
UGPU
UGSRC
UGPD
UGSNK
LGPU
LGSRC
LGPD
LGSNK
UGFLGR
LGFUGR
200mA Source Current 1.0 1.5 Ω
UGATE - PHASE = 2.5V 2.0 A
250mA Sink Current 1.0 1.5 Ω
UGATE - PHASE = 2.5V 2.0 A
250mA Source Current 1.0 1.5 Ω
LGATE - VSSP = 2.5V 2.0 A
250mA Sink Current 0.5 0.9 Ω
LGATE - VSSP = 2.5V 4.0 A
UGATE falling to LGATE rising, no load 17 ns
LGATE falling to UGATE rising, no load 29 ns
BOOTSTRAP SWITCH
On Resistance R
Reverse Leakage I
F
R
VR = 25V 0.2 µA
15 Ω
PROTECTION
Overvoltage Threshold OV
H
VSEN rising above setpoint for >1µs 145 175 200 mV
Current Imbalance Threshold (VR1) One ISEN above another ISEN for >3.2ms 23 mV
VR1 Overcurrent Threshold 3-Phase - PS0 and 1-Phase - all states 56 60 64 µA
3-Phase - PS1 37 40 43 µA
3-Phase - PS2 18 20 22 µA
2-Phase - PS0 56 60 64 µA
2-Phase - PS1 and PS2 27 30 33 µA
VR2 Overcurrent Threshold 1-Phase - all states 56 60 64 µA
8
FN8315.0
May 9, 2013
ISL95839
Electrical Specifications Operating Conditions: V
apply over the operating temperature range, -10°C to +100°C (Continued)
PARAMETER SYMBOL TEST CONDITIONS
LOGIC THRESHOLDS
VR_ON Input Low V
VR_ON Input High V
PWM3
PWM Output Low V
PWM Output High V
PWM Tri-State Leakage PWM = 2.5V 1 µA
NTC and NTCG
NTC Source Current NTC = 1.3V 58 60 62 µA
VR_HOT# Trip Voltage (VR1 and VR2) Falling 0.881 0.893 0.905 V
VR_HOT# Reset Voltage (VR1 and VR2)
Therm_Alert Trip Voltage (VR1 and VR2)
Therm_Alert Reset Voltage (VR1 and VR2)
IL
IH
0L
0H
= 5V, TA = -10°C to +100°C, fSW = 300kHz, unless otherwise noted. Boldface limits
DD
MIN
(Note 6) TYP
0.7 V
Sinking 5mA 1.0 V
Sourcing 5mA 3.5 4.2 V
Rising 0.924 0.936 0.948 V
Falling 0.920 0.932 0.944 V
Rising 0.962 0.974 0.986 V
MAX
(Note 6) UNITS
0.3 V
INPUTS
VR_ON Leakage Current I
SCLK, SDA Leakage VR_ON = 0V, SCLK and SDA = 0V and 1V -1 1 µA
SLEW RATE (For VID Change)
Fast Slew Rate 10 mV/µs
Slow Slew Rate 2.5 mV/µs
NOTE:
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
VR_ON
VR_ON = 0V -1 A
VR_ON = 1V 3.5 6 µA
VR_ON = 1V, SCLK and SDA = 1V -2 1 µA
VR_ON = 1V, SDA = 0V -21 µA
VR_ON = 1V, SCLK= 0V -42 µA
9
FN8315.0
May 9, 2013
Gate Driver Timing Diagram
PWM
UGATE
LGATE
1V
1V
t
UGFLGR
t
RL
t
FU
t
RU
t
FL
t
LGFUGR
FIGURE 4. R
3
MODULATOR CIRCUIT
Crm
gmVo
MASTER
CLOCK
VW
COMP
MASTER
CLOCK
Phase
Sequencer
Clock1 Clock2
R
I
L1
gm
Clock1
Phase1
Crs1
VW
S
Q
PWM1
L1
R
I
L2
gm
Clock2
Phase2
Crs2
VW
S
Q
PWM2
L2
Co
Vo
Vcrm
Vcrs1
Vcrs2
MASTER CLOCK CIRCUIT
SLAVE CIRCUIT 1
SLAVE CIRCUIT 2
R
I
L3
gm
Clock3
Phase3
Crs3
VW
S
Q
PWM3
L3
Vcrs3
SLAVE CIRCUIT 3
Clock3
ISL95839
Theory of Operation
Multiphase R3™ Modulator
The ISL95839 is a multiphase regulator implementing Intel™ IMVP-7/VR12™ protocol. It has two voltage regulators, VR1 and VR2, on one chip. VR1 can be programmed for 1-, 2- or 3-phase operation, and VR2 is 1-phase operation. The following description is based on VR1, but also applies to VR2 because they are based on the same architecture.
The ISL95839 uses Intersil patented R3™ (Robust Ripple Regulator™) modulator. The R3™ modulator combines the best features of fixed frequency PWM and hysteretic PWM while eliminating many of their shortcomings. Figure 4 conceptually shows the multiphase R3™ modulator circuit, and Figure 5 shows the operation principles.
Inside the IC, the modulator uses the master clock circuit to generate the clocks for the slave circuits. The modulator discharges the ripple capacitor Crm with a current source equal to g sawtooth waveform traversing between the VW and COMP voltages. It resets to VW when it hits COMP, and generates a one-shot master clock signal. A phase sequencer distributes the master clock signal to the slave circuits. If VR1 is in 3-phase mode, the master clock signal will be distributed to the three phases, and the Clock1~3 signals will be 120° out-of-phase. If VR1 is in 2-phase mode, the master clock signal will be distributed to Phases 1 and 2, and the Clock1 and Clock2 signals will be 180° out-of-phase. If VR1 is in 1-phase mode, the master clock signal will be distributed to Phase 1 only and will be the Clock1 signal.
Each slave circuit has its own ripple capacitor C mimics the inductor ripple current. A g inductor voltage into a current source to charge and discharge C clock signal, and the current source charges C voltage V and the current source discharges Crs.
Since the controller works with V and noise-free synthesized signals, it achieves lower phase jitter
, where gm is a gain factor. Crm voltage V
mVo
. The slave circuit turns on its PWM pulse upon receiving the
rs
hits VW, the slave circuit turns off the PWM pulse,
Crs
10
amplifier converts the
m
, which are large-amplitude
crs
crm
, whose voltage
rs
. When Crs
rs
is a
than conventional hysteretic mode and fixed PWM mode controllers. Unlike conventional hysteretic mode converters, the ISL95839 uses an error amplifier that allows the controller to maintain a 0.5% output voltage accuracy.
FN8315.0
May 9, 2013
ISL95839
FIGURE 5. R3 MODULATOR OPERATION PRINCIPLES IN
STEADY STATE
COMP
Vcrm
Master
Clock
PWM1
VW
Clock1
PWM2
Clock2
HYSTERETIC
WINDOW
PWM3
Vcrs3
Clock3
Vcrs2 Vcrs1
VW
FIGURE 6. R3 MODULATOR OPERATION PRINCIPLES IN LOAD
INSERTION RESPONSE
COMP
Vcrm
Master
Clock
PWM1
Vcrs1
VW
Clock1
PWM2
Vcrs2
Clock2
PWM3
Clock3
Vcrs3
VW
UGATE
Phase
IL
LGATE
FIGURE 7. DIODE EMULATION
rises as the COMP voltage rises, making the PWM pulses wider. During load release response, the COMP voltage falls. It takes the master clock circuit longer to generate the next master clock signal so the PWM pulse is held off until needed. The VW voltage falls as the COMP voltage falls, reducing the current PWM pulse width. This kind of behavior gives the controller excellent response speed.
The fact that all the phases share the same VW window voltage also ensures excellent dynamic current balance among phases.
Diode Emulation and Period Stretching
Figure 6 shows the operation principles during load insertion response. The COMP voltage rises during load insertion, generating the master clock signal more quickly, so the PWM pulses turn on earlier, increasing the effective switching frequency, which allows for higher control loop bandwidth than conventional fixed frequency PWM controllers. The VW voltage
11
ISL95839 can operate in diode emulation (DE) mode to improve light load efficiency. In DE mode, the low-side MOSFET conducts when the current is flowing from source to drain and doesn’t allow reverse current, emulating a diode. As Figure 7 shows, when LGATE is on, the low-side MOSFET carries current, creating negative voltage on the phase node due to the voltage drop across the ON-resistance. The controller monitors the current through monitoring the phase node voltage. It turns off LGATE when the phase node voltage reaches zero to prevent the inductor current from reversing the direction and creating unnecessary power loss.
If the load current is light enough, as Figure 7 shows, the inductor current will reach and stay at zero before the next phase node pulse and the regulator is in discontinuous conduction mode (DCM). If the load current is heavy enough, the inductor current will never reach 0A, and the regulator is in CCM although the controller is in DE mode.
Figure 8 shows the operation principle in diode emulation mode at light load. The load gets incrementally lighter in the three cases from top to bottom. The PWM on-time is determined by the VW window size, therefore is the same, making the inductor current triangle the same in the three cases. The controller clamps the master ripple capacitor voltage V voltage V takes the V
in DE mode to make it mimic the inductor current. It
crs
longer to hit COMP, naturally stretching the
crm
and the slave ripple capacitor
crm
switching period. The inductor current triangles move further apart from each other such that the inductor current average value is equal to the load current. The reduced switching frequency helps increase light load efficiency.
FN8315.0
May 9, 2013
iL
iL
Vcrs
iL
Vcrs
Vcrs
VW
CCM/DCM BOUNDARY
LIGHT DCM
DEEP DCM
VW
VW
FIGURE 8. PERIOD STRETCHING
VDD
VR_ON
DAC
2.6ms
2.5mV/µs VID
SLEW RATE
VID
COMMAND
VOLTAGE
PGOOD
ALERT#
…...
FIGURE 9. VR1 SOFT-START WAVEFORMS
ISL95839
Start-up Timing
With the controller's VDD voltage above the POR threshold, the start-up sequence begins when VR_ON exceeds the logic high threshold. Figure 9 shows the typical start-up timing of VR1 and VR2. The controller uses digital soft-start to ramp-up DAC to the voltage programmed by the SetVID command. PGOOD is asserted high and ALERT# is asserted low at the end of the ramp up. Similar results occur if VR_ON is tied to V starting 2.6ms after VDD crosses the POR threshold.
Voltage Regulation and Load Line Implementation
After the start sequence, the controller regulates the output voltage to the value set by the VID information per Table 1. The controller will control the no-load output voltage to an accuracy of ±0.5% over the range of 0.25V to 1.52V. A differential amplifier allows voltage sensing for precise voltage regulation at the microprocessor die.
, with the soft-start sequence
DD
12
TABLE 1. VID TABLE
VID
HEX V
(V)765 43210
O
0 0 0 0 0 0 0 0 0 0 0.00000
0 0 0 0 0 0 0 1 0 1 0.25000
0 0 0 0 0 0 1 0 0 2 0.25500
0 0 0 0 0 0 1 1 0 3 0.26000
0 0 0 0 0 1 0 0 0 4 0.26500
0 0 0 0 0 1 0 1 0 5 0.27000
0 0 0 0 0 1 1 0 0 6 0.27500
0 0 0 0 0 1 1 1 0 7 0.28000
0 0 0 0 1 0 0 0 0 8 0.28500
0 0 0 0 1 0 0 1 0 9 0.29000
0 0 0 0 1 0 1 0 0 A 0.29500
0 0 0 0 1 0 1 1 0 B 0.30000
0 0 0 0 1 1 0 0 0 C 0.30500
000 011010D0.31000
0 0 0 0 1 1 1 0 0 E 0.31500
0 0 0 0 1 1 1 1 0 F 0.32000
0 0 0 1 0 0 0 0 1 0 0.32500
0 0 0 1 0 0 0 1 1 1 0.33000
0 0 0 1 0 0 1 0 1 2 0.33500
0 0 0 1 0 0 1 1 1 3 0.34000
0 0 0 1 0 1 0 0 1 4 0.34500
0 0 0 1 0 1 0 1 1 5 0.35000
0 0 0 1 0 1 1 0 1 6 0.35500
0 0 0 1 0 1 1 1 1 7 0.36000
0 0 0 1 1 0 0 0 1 8 0.36500
000 11001190.37000
000 110101A0.37500
0 0 0 1 1 0 1 1 1 B 0.38000
0 0 0 1 1 1 0 0 1 C 0.38500
0 0 0 1 1 1 0 1 1 D 0.39000
0 0 0 1 1 1 1 0 1 E 0.39500
0 0 0 1 1 1 1 1 1 F 0.40000
0 0 1 0 0 0 0 0 2 0 0.40500
001 00001210.41000
0 0 1 0 0 0 1 0 2 2 0.41500
0 0 1 0 0 0 1 1 2 3 0.42000
0 0 1 0 0 1 0 0 2 4 0.42500
0 0 1 0 0 1 0 1 2 5 0.43000
0 0 1 0 0 1 1 0 2 6 0.43500
FN8315.0
May 9, 2013
Loading...
+ 25 hidden pages