intersil ISL6412 DATA SHEET

®
www.BDTIC.com/Intersil
ISL6412
Data Sheet March 20, 2007
Triple Output, Low-Noise LDO Regulator with Integrated Reset Circuit
The ISL6412 is an ultra low noise triple output LDO regulator with microprocessor reset circuit and is optimized for powering wireless chip sets. The IC accepts an input voltage range of 3.0V to 3.6V and provides three regulated output voltages: 1.8V (LDO1), 2.8V (LDO2), and another ultra-clean
2.8V (LDO3). On chip logic provides sequencing between LDO1 and LDO2 for the BBP/MAC and the I/O supply voltage outputs. LDO3 features ultra low noise that does not typically exceed 30µV RMS to aid VCO stability. High integration and the thin Quad Flat No-lead (QFN) package makes the ISL6412 an ideal choice to power many of today’s small form factor industry standard wireless cards such as PCMCIA, mini-PCI and Cardbus-32.
The ISL6412 uses an internal PMOS transistor as the pass device. The ISL6412 also integrates a reset function, which eliminates the need for the additional reset IC required in WLAN applications. The IC asserts a RESET whenever the VIN supply voltage drops below a preset threshold, keeping it asserted for a time set by a capacitor to GND after VIN has risen above the reset threshold. FAULT1 indicates the loss of regulation on LDO1.
signal
Ordering Information
PART
NUMBER
ISL6412IR ISL6412IR -40 to +85 16 Ld 4x4 QFN L16.4x4 ISL6412IR-TK ISL6412IR -40 to +85 16 Ld 4x4 QFN L16.4x4 ISL6412IR-T5K ISL6412IR -40 to +85 16 Ld 4x4 QFN L16.4x4 ISL6412IRZ
(Note 2) ISL6412IRZ-TK
(Notes 1, 2)
NOTES:
1. T ape and Reel available. Add “-T” suffix for Tape and Reel Packing Option
2. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
PART
MARKING
6412IRZ -40 to +85 16 Ld 4x4 QFN
6412IRZ -40 to +85 16 Ld 4x4 QFN
TEMP.
RANGE
(°C) PACKAGE
(Pb-free)
(Pb-free)
PKG.
DWG. #
L16.4x4
L16.4x4
FN9067.1
Features
• Small DC/DC Converter Size
- Three LDOs and Reset Circuitry in a Low-Profile 4x4mm QFN Package
• High Output Current
- LDO1, 1.8V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330mA
- LDO2, 2.8V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225mA
- LDO3, 2.8V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125mA
• Ultra-Low Dropout Voltage
- LDO2, 2.8V. . . . . . . . . . . . . . . . 125mV (typ.) at 225mA
- LDO3, 2.8V. . . . . . . . . . . . . . . . 100mV (typ.) at 125mA
• Ultra-Low Output Voltage Noise
-<30μV
• Stable with Small Ceramic Output Capacitors
• Extensive Protection and Monitoring Features
- Over current protection
- Short circuit protection
- Thermal shutdown
- FAULT indicator
• Logic-Controlled Shutdown Pin
• Integrated Microprocessor Reset Circuit
- Programmable Reset Delay
• Proven Reference Design for a Total WLAN System Solution
• QFN Package
- Compliant to JEDEC PUB95 MO-220 QFN - Quad Flat
No Leads - Product Outline
- Near Chip-Scale Package Footprint Improves PCB
Efficiency and Is Thinner in Profile
• Pb-Free Plus Anneal Available (RoHS Compliant)
(typ.) for LDO3 (VCO Supply)
RMS
Applications
• PRISM® 3 Chipsets – ISL37106P
•WLAN Cards
- PCMCIA, Cardbus32, MiniPCI Cards
- Compact Flash Cards
• Liberty Chipset
• Hand-Held Instruments
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774
Copyright © Intersil Americas Inc. 2004, 2007. All Rights Reserved. All Rights Reserved.
| Intersil (and design) is a registered trademark of Intersil Americas Inc.
All other trademarks mentioned are the property of their respective owners.
Pinout
www.BDTIC.com/Intersil
ISL6412
ISL6412 (16 LD QFN)
TOP VIEW
NC
FAULT1
VIN
1516 14 13
VIN
Typical Application Schematic
+3.3V
V
IN
+
C4
3.3μF
1
RESET
2 3
C8
4
NC
V
0.01μF
+2.8V
OUT3
CT SHDN
RESET
CT
SHDN
NC
16
ISL6412
OUT3
5
NC
6
15
CC3
7
FAULT1
1
2
3
4
6578
CC3
OUT3
13
14
VIN
VIN
OUT1
CC1
OUT2
CC2
GND3
GND
8
GND3
12 11 10
9
0.033μF
OUT1
12
CC1
11
OUT2
10
CC2
9
GND
C5 C6
0.033μF
C2
3.3μF
C1
3.3μF
+1.8V
+2.8V
V
V
OUT1
OUT2
C3
3.3μF
C7
0.033μF
Typical Bill Of Materials
REFERENCE
DESIGNATOR VALUE PACKAGE MANUFACTURER
C1, C2, C3, C4 3.3µF, X7R 1206 TDK C3216X7R1A106M
C5, C6, C7 0.033µF, X7R 0603 TDK/ANY C1608X7R1A333K
C8 0.01µF, X7R 0603 TDK/ANY C1608X7R1A103K U1 ISL6412IR QFN16 Intersil ISL6412IR
2
MANUFACTURER’S
PART NUMBER
FN9067.1
March 20, 2007
Functional Block Diagram
www.BDTIC.com/Intersil
15
FAULT1
THERMAL SHUTDOWN
CONTROL
LOGIC
WINDOW COMP
150°C
BAND GAP REF.
1.2V
EN
VREF
ISL6412
LDO1
EN
EN
LDO2
VREF
EN
EN
13
VIN
14
VIN
+
-
VIN
OUT2
CC2
OUT1
OUT2
CC2
12
11CC1
10
9
32SHDN
CT
1
RESET
8
GND
RESET
EN
LDO3
VREF
EN
CC3
VIN
OUT3
OUT3
CC3
GND3
5
6
7
3
FN9067.1
March 20, 2007
ISL6412
www.BDTIC.com/Intersil
Absolute Maximum Ratings Thermal Information
VIN, SHDN to GND/GND3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.0V
SET, CC, FAULT to GND/GND3 . . . . . . . . . . . . . . . . . -0.3V to 7.0V
Output Current (Continuous)
LDO1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330mA
LDO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225mA
LDO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125mA
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Class 1
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See
3. θ
JA
Tech Brief TB379.
4. For θ
, the “case temp” location is the center of the exposed metal pad on the package underside.
JC
Thermal Resistance (Typical) θ
QFN Package (Notes 3, 4). . . . . . . . 46 9
Maximum Junction Temperature (Plastic Package) -55°C to +150°C
Maximum Storage Temperature Range. . . . . . . . . .-65°C to +150°C
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . +300°C
Operating Temperature Range . . . . . . . . . . . . . . . . .-40°C to +85°C
(°C/W) θJC (°C/W)
JA
Electrical Specifications V
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
GENERAL SPECIFICATIONS
Voltage Range 3.0 3.3 3.6 V
V
IN
Operating Supply Current I Shutdown Supply Current SHDN = GND - 5 10 μA SHDN Input Threshold V
Thermal Shutdown Temperature (Note 7) 145 150 160 °C Thermal Shutdown Hysteresis (Note 7) - 20 - °C Start-up Time (Note 7) C
Input Undervoltage Lockout Rising 75mV Hysteresis 2.4 2.45 2.6 V
LDO1 SPECIFICATIONS
Output Voltage (V Output Voltage Initial Accuracy I Line Regulation V Load Regulation I Maximum Output Current (I Output Current Limit (Note 7) 500 600 1105 mA Output Voltage Noise (Note 7) 10Hz < f < 100kHz, C
LDO2 SPECIFICATIONS
Output Voltage (V Output Voltage Accuracy I Maximum Output Current (I Output Current Limit (Note 7) 330 - 900 mA Dropout Voltage (Notes 5, 7) I Line Regulation V Load Regulation I
) -1.8- V
OUT1
OUT1
) -2.8- V
OUT2
OUT2
= +3.3V, Compensation Capacitor = 33nF, TA = +25°C, unless otherwise noted.
IN
= 0mA - 830 1125 μA
OUT
, VIN = 3V to 3.6V 2.0 - - V
IH
VIL, VIN = 3V to 3.6V - - 0.4 V
= 10μF, V
OUT
value
= 10mA, TA = -40°C to 85°C -2.0 - 2.0 %
OUT
= 3.0V to 3.6V, I
IN
= 10mA to 330mA -1.5 - 1.5 %
OUT
) (Note 7) 330 - - mA
= 50mA
I
OUT
= 10mA, TA = -40°C to 85°C -2.0 - 2.0 %
OUT
) (Note 7) VIN = 3.6V 225 - - mA
= 225mA - 125 160 mV
OUT
= 3.0V to 3.6V, I
IN
= 10mA to 225mA - 0.2 1.0 %
OUT
= 90% of final
OUT
OUT
OUT
OUT
- 120 - μs
= 10mA -0.15 0.0 0.15 %/V
= 4.7μF,
= 10mA -0.15 0.0 0.15 %/V
-115-μV
RMS
4
FN9067.1
March 20, 2007
ISL6412
www.BDTIC.com/Intersil
Electrical Specifications V
= +3.3V, Compensation Capacitor = 33nF, TA = +25°C, unless otherwise noted. (Continued)
IN
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
Output Voltage Noise (Note 7) 10Hz < f < 100kHz, I
= 2.2μF-65-μV
C
OUT
C
= 10μF-60-μV
OUT
OUT
= 10mA
LDO3 SPECIFICATIONS
Output Voltage (V Output Voltage Accuracy I Maximum Output Current (I
) -2.8- V
OUT3
= 10mA, TA = -40°C to +85°C -2.0 - 2.0 %
OUT
) (Note 7) VIN = 3.6V 225 - - mA
OUT3
Output Current Limit (Note 7) 300 450 840 mA Dropout Voltage (Notes 5, 7) I Line Regulation V Load Regulation I Output Voltage Noise (Note 7) 10Hz < f < 100kHz, I
= 125mA - 100 160 mV
OUT
= 3.0V to 3.6V, I
IN
= 10mA to 125mA - 0.2 1.0 %
OUT
= 2.2μF-30-μV
C
OUT
C
= 10μF-20-μV
OUT
= 10mA -0.15 0.0 0.15 %/V
OUT
= 10mA
OUT
RESET BLOCK SPECIFICATIONS
Reset Threshold 2.564 2.630 2.66 V Reset Threshold Hysteresis (Note 7) 6.3 - - mV
to Reset Delay VCC = VTH to VTH - 100mV - 20 - μs
V
IN
RESET Active Timeout Period (Notes 6, 7) CT = 0.01µF 50 - - ms
FAULT1
Rising Threshold % of V Falling Threshold % of V
OUT OUT
+5.5 +8.0 +10.5 %
-10.5 -8.0 -5.5 %
NOTES:
5. The dropout voltage is defined as V
6. The RESET
time is linear with CT at a slope of ~5ms/nF. Thus, at 10nF (0.01μF) the RESET time is 50ms.
OUT
, when V
IN
is 50mV below the value of V
OUT
OUT
for VIN = V
OUT
+ 0.5V.
- V
7. Guaranteed by design, not production tested.
RMS RMS
RMS RMS
Typical Performance Curves The test conditions for the Typical Operating Performance are: V
Unless Otherwise Noted
SHDN
1V/DIV
VOUT2 1V/DIV
100µs/DIV
VOUT1 1V/DIV
VOUT1 1V/DIV
VOUT3
1V/DIV
FIGURE 1. START-UP SEQUENCE FIGURE 2. SHUTDOWN SEQUENCE
5
100µs/DIV
= 3.3V, TA = +25°C,
IN
SHDN
1V/DIV
VOUT2 1V/DIV
VOUT3 1V/DIV
March 20, 2007
FN9067.1
ISL6412
www.BDTIC.com/Intersil
Typical Performance Curves The test conditions for the Typical Operating Performance are: V
= 3.3V, TA = +25°C,
IN
Unless Otherwise Noted (Continued)
SHDN
2V/DIV
VOUT1 2V/DIV
RESET 2V/DIV
FAULT 2V/DIV
20ms/DIV
VOUT1
50mV/DIV
IOUT1
200mA/DIV
1ms/DIV
FIGURE 3. SHUTDOWN, FAULT, and RESET OPERATION FIGURE 4. LDO1 TRANSIENT RESPONSE (10mA to 330mA)
VOUT2
100mV/DIV
VOUT3
100mV/DIV
IOUT2
100mA/DIV
1ms/DIV
IOUT3
50mA/DIV
1ms/DIV
FIGURE 5. LDO2 TRANSIENT RESPONSE (10mA to 200mA) FIGURE 6. LDO3 TRANSIENT RESPONSE (10mA to 100mA)
VIN
0.5V/DIV
VIN
0.5V/DIV RESET
0.5V/DIV
0.5V/DIV
20ms/DIV
CT
CT
0.5V/DIV
RESET
0.5V/DIV
100ms/DIV
FIGURE 7. RESET DELAY DURING START-UP (CT = 0.01µF) FIGURE 8. RESET DELAY DURING START-UP (CT = 0.1µF)
6
FN9067.1
March 20, 2007
ISL6412
www.BDTIC.com/Intersil
Typical Performance Curves The test conditions for the Typical Operating Performance are: V
Unless Otherwise Noted (Continued)
-10
-20
-30
FAULT 1V/DIV
VOUT1/2/3
1V/DIV
FIGURE 9. THERMAL SHUTDOWN OPERATION FIGURE 10. LDO1 POWER SUPPLY REJECTION
500ms/DIV
VIN
0.5V/DIV
VIN = 2.7V
-40
PSRR (dB)
-50
-60 10 1k
(IOUT1 = 100mA, COUT = 10µF MLCC)
100
FREQUENCY (A)
= 3.3V, TA = +25°C,
IN
10k 100k
1M
VOUT1
0.5V/DIV
FAULT
0.5V/DIV
FIGURE 11. VOUT1 REGULATION DOWN TO VIN = 2.7V; FAULT MONITORS VOUT1 ONLY
Pin Descriptions
OUT1 - This pin is the output for LDO1. Bypass with a minimum of 2.2µF, low ESR capacitor to GND for stable operation.
V
- Supply input pins. Connect to input power source.
IN
Bypass with a minimum 2.2μF capacitor to GND. Both V pins must be tied together on the PC board, close to the IC.
GND - Ground for LDO1 and LDO2. CC1 - Compensation Capacitor for LDO1. Connect a
0.033µF capacitor from CC1 to GND. SHDN - Shutdown input for all LDOs. Connect to V
normal operation. Drive this pin LOW to turn off all LDOs.
IN
IN
for
OUT2 - This pin is the output for LDO2. Bypass with a minimum of 2.2µF, low ESR capacitor to GND for stable operation.
CT - Timing pin for the RESET circuit pulse width. CC2 - Compensation capacitor for LDO2. Connect a
0.033µF capacitor from CC2 to GND. OUT3 - This pin is output for LDO3. Bypass with a minimum
of 2.2µF, low ESR capacitor to GND3 for stable operation.
GND3 - Ground pin for LDO3. CC3 - Compensation capacitor for LDO3. Connect a
0.033µF capacitor from CC3 to GND3. FAULT1 - This is the power good indicator for LDO1. When
the 1.8V output is out of regulation this pin goes LOW. This
7
FN9067.1
March 20, 2007
ISL6412
www.BDTIC.com/Intersil
pin also goes LOW during thermal shutdown or an overcurrent event on LDO1. Connect this pin to GND, if unused.
RESET
- This pin is the active-LOW output of the push-pull output stage of the integrated reset supervisory circuit. The reset circuit monitors V pin, if V output remains LOW, while the V reset threshold, and for at least 25ms, after V the RESET threshold.
falls below the RESET threshold. The RESET
IN
and asserts a RESET output at this
IN
pin voltage is below the
IN
rises above
IN
Functional Description
The ISL6412 is a 3-in-1 multi-output, low dropout, regulator designed for wireless chipset power applications. It supplies three fixed output voltages 1.8V, 2.8V and 2.8V. Each LDO consists of a 1.2V reference, error amplifier, MOSFET driver, P-Channel pass transistor, dual-mode comparator and internal feedback voltage divider.
The 1.2V band gap reference is connected to the error amplifier’s inverting input. The error amplifier compares this reference to the selected feedback voltage and amplifies the difference. The MOSFET driver reads the error signal and applies the appropriate drive to the P-Channel pass transistor. If the feedback voltage is lower then the reference voltage, the pass transistor gate is pulled lower, allowing more current to pass and increasing the output voltage. If the feedback voltage is higher then the reference voltage, the pass transistor gate is driven higher , allowing less current to pass to the output. The output voltage is fed back through an internal resistor divider connected to OUT1/OUT2/OUT3 pins.
Additional blocks include an output overcurrent protection, thermal sensor, fault detector, RESET shutdown logic.
Internal P-Channel Pass Transistors
The ISL6412 features a typical 0.5Ω r MOSFET pass transistors. This provides several advantages over similar designs using PNP bipolar pass transistors. The P-Channel MOSFET requires no base drive, which reduces quiescent current considerably. PNP based regulators waste considerable current in dropout when the pass transistor saturates. They also use high base drive currents under large loads. The ISL6412 does not suffer from these problems.
function and
P-channel
DS(ON)
The voltage at the CT pin is compared to the 1.2V bandgap voltage. The charging of the CT capacitor behaves like an RC network and the RESET
Td = -R*C*ln(1-1.2V/VIN) Where C is the capacitor at CT, and R is 11.1MΩ for
VIN = 3.3V. With no capacitor on the CT pin the RESET delay will be close to zero. Figure 12 shows the RESET delay vs CT capacitance.
500
400
300
200
DELAY (ms)
100
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0
FIGURE 12. RESET DELAY vs CT CAPACITANCE
delay can be approximated by:
CT (µF)
Output Voltages
The ISL6412 provides fixed output voltages for use in Wireless Chipset applications. Internal trimmed resistor networks set the typical output voltages as shown here:
V
OUT1
= 1.8V; V
OUT2
= 2.8V; V
OUT3
= 2.8V.
Shutdown
Pulling the SHDN pin LOW puts the complete chip into shutdown mode, and supply current drops to 5μA typical. This input has an internal pull-up resistor, so that in normal operation the outputs are always enabled; external pull-up resistors are not required.
Current Limit
The ISL6412 monitors and controls the pass transistor’s gate voltage to limit the output current. The current limit for LDO1 is 500mA, LDO2 is 330mA and LDO3 is 300mA. The output can be shorted to ground without damaging the part due to the current limit and thermal protection features.
Integrated Reset for MAC/Baseband Processors
The ISL6412 includes a microprocessor supervisory block. This block eliminates the extra reset IC and external components needed in wireless chipset applications. This block performs a single function; it asserts a RESET whenever the V threshold, keeping it asserted for a programmable time (set by external capacitor CT) after the V above the reset threshold. The reset threshold for the ISL6412 is 2.63V typical.
supply voltage decreases below a preset
IN
pin voltage has risen
IN
8
signal
FN9067.1
March 20, 2007
ISL6412
www.BDTIC.com/Intersil
Thermal Overload Protection
Thermal overload protection limits total power dissipation in the ISL6412. When the junction temperature (T
) exceeds
J
+150°C, the thermal sensor sends a signal to the shutdown logic, turning off the pass transistor and allowing the IC to cool. The pass transistor turns on again after the IC’s junction temperature typically cools by 20°C, resulting in a pulsed output during continuous thermal overload conditions. Thermal overload protection protects the ISL6412 against fault conditions. For continuous operation, do not exceed the absolute maximum junction temperature rating of +150°C.
Operating Region and Power Dissipation
The maximum power dissipation of ISL6412 depends on the thermal resistance of the IC package and circuit board, the temperature difference between the die junction and ambient air, and the rate of air flow. The power dissipated in the device is:
PT = P1 + P2 + P3, where P1 = I P2 = I P3 = I
OUT1 OUT2 OUT3
(VIN – V (VIN – V (VIN- V
OUT1 OUT2
OUT3
) )
) The maximum power dissipation is: Pmax = (Tjmax – TA)/θJA Where Tjmax = +150°C, TA = ambient temperature, and θJA
is the thermal resistance from the junction to the surrounding environment.
The ISL6412 package features an exposed thermal pad on its underside. This pad lowers the thermal resistance of the package by providing a direct heat conduction path from the die to the PC board. Additionally, the ISL6412’s ground (GND/GND3) performs the dual function of providing an electrical connection to system ground and channeling heat away. Connect the exposed backside pad and GND to the system ground using a large pad or ground plane, or through multiple vias to the ground plane layer.
Integrator Circuitry
The ISL6412 uses an external 33nF compensation capacitor for minimizing load and line regulation errors and for lowering output noise. When the output voltage shifts due to varying load current or input voltage, the integrator capacitor voltage is raised or lowered to compensate for the systematic offset at the error amplifier. Compensation is limited to ±5% to minimize transient overshoot when the device goes out of dropout, current limit, or thermal shutdown.
FAULT Functionality
TABLE 1.
EVENT FAULT1
Below UVLO threshold L
= 1.8V ±8% typ
V
OUT1
V
OUT2/VOUT3
V
OUT1
V
OUT2
Thermal Shutdown L Normal Shutdown with SHDN pin L Overcurrent only on LDO1 L Overcurrent only on LDO2/LDO3 H
not in regulation
not in regulation and V
are in regulation
OUT3
H
L
Applications Information
Capacitor Selection and Regulator Stability
Capacitors are required at the ISL6412’s input and output for stable operation over the entire load range and the full temperature range. Use >1µF capacitor at the input of ISL6412. The input capacitor lowers the source impedance of the input supply. Larger capacitor values and lower ESR provides better PSRR and line transient response. The input capacitor must be located at a distance of not more then 0.5 inches from the VIN pins of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used as an input capacitor.
The output capacitor must meet the requirements of minimum amount of capacitance and ESR for all three LDO’s. The ISL6412 is specifically designed to work with small ceramic output capacitors. The output capacitor’s ESR affects stability and output noise. Use an output capacitor with an ESR of 50mΩ or less to insure stability and optimum transient response. For stable operation, a ceramic capacitor, with a minimum value of 3.3μF, is recommended for V recommended for V current. There is no upper limit to the output capacitor value. Larger capacitor can reduce noise and improve load transient response, stability and PSRR. Higher value of output capacitor (10µF) is recommended for LDO3 when used to power VCO circuitry in wireless chipsets. The output capacitor should be located very close to VOUT pins to minimize impact of PC board i n du ctances and the other end of the capacitor should be returned to a clean analog ground.
Input-Output (Dropout) Voltage
A regulator’s minimum input-output voltage differential (or dropout voltage) determines the lowest usable supply voltage. Because the ISL6412 uses a P-channel MOSFET pass transistor, its dropout voltage is a function of r (typically 0.5) multiplied by the load current.
for 300mA output current, and 2.2μF is
OUT1
OUT2
and V
each at 200mA load
OUT3
DS(ON)
9
FN9067.1
March 20, 2007
ISL6412
www.BDTIC.com/Intersil
Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP)
L16.4x4
16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220-VGGC ISSUE C)
MILLIMETERS
SYMBOL
A 0.80 0.90 1.00 ­A1 - - 0.05 ­A2 - - 1.00 9 A3 0.20 REF 9
b 0.23 0.28 0.35 5, 8
D 4.00 BSC -
D1 3.75 BSC 9 D2 1.95 2.10 2.25 7, 8
E 4.00 BSC ­E1 3.75 BSC 9 E2 1.95 2.10 2.25 7, 8
e 0.65 BSC -
k0.25 - - -
L 0.50 0.60 0.75 8 L1 - - 0.15 10
N162
Nd 4 3 Ne 4 3
P- -0.609
θ --129
NOTES:
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd and Ne refer to the number of terminals on each D and E.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature.
7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance.
8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389.
9. Features and dimensions A2, A3, D1, E1, P & θ are present when Anvil singulation method is used and not present for saw singulation.
10. Depending on the method of lead termination at the edge of the package, a maximum 0.15mm pull back (L1) maybe present. L minus L1 to be equal to or greater than 0.3mm.
NOTESMIN NOMINAL MAX
Rev. 5 5/04
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implic atio n or other wise u nde r any p a tent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
10
FN9067.1
March 20, 2007
Loading...