Intersil ISL6377HRZ, ISL6377IRZ Schematics

Multiphase PWM Regulator for AMD Fusion™ Desktop
0
10
20
30
40
50
60
70
80
90
100
0 5 10 15 20 25 30 35 40 45 50 55
I
OUT
(A)
EFFICIENCY (%)
V
OUT
CORE = 1.1V
V
IN
= 8V
V
IN
= 12V
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
0 5 10 15 20 25 30 35 40 45 50 55
I
OUT
(A)
V
OUT
(A)
V
IN
= 8V
V
IN
= 12V
V
OUT
CORE = 1.1V
CPUs Using SVI 2.0
ISL6377
The ISL6377 is fully compliant with AMD Fusion™ SVI 2.0 and provides a complete solution for microprocessor and graphics processor core power. The ISL6377 controller supports two Voltage Regulators (VRs) with three integrated gate drivers and three optional external drivers for maximum flexibility. The Core VR can be configured for 4-, 3-, 2-, or 1-phase operation while the Northbridge VR supports 2- or 1-phase configurations. The two VRs share a serial control bus to communicate with the AMD CPU and achieve lower cost and smaller board area compared with two-chip solutions.
The PWM modulator is based on Intersil’s Robust Ripple Regulator R3 Technology™. Compared to traditional modulators, the R3 modulator can automatically change switching frequency for faster transient settling time during load transients and improved light load efficiency.
The ISL6377 has several other key features. Both outputs support DCR current sensing with single NTC thermistor for DCR temperature compensation or accurate resistor current sensing. Both outputs utilize remote voltage sense, adjustable switching frequency, OC protection and power good.
Applications
• AMD Fusion CPU/GPU Core Power
•Desktop Computers
Features
• Supports AMD SVI 2.0 Serial Data Bus Interface
• Dual Output Controller with Integrated Drivers
- Two Dedicated Core Drivers
- One Programmable Driver for Either Core or Northbridge
• Precision Voltage Regulation
- 0.5% System Accuracy Over-Temperature
- 0.5V to 1.55V in 6.25mV Steps
- Enhanced Load Line Accuracy
• Supports Multiple Current Sensing Methods
- Lossless Inductor DCR Current Sensing
- Precision Resistor Current Sensing
• Programmable 1-, 2-, 3- or 4-Phase for the Core Output and 1- or 2-Phase for the Northbridge Output
• Adaptive Body Diode Conduction Time Reduction
• Superior Noise Immunity and Transient Response
• Output Current and Voltage Telemetry
• Differential Remote Voltage Sensing
• High Efficiency Across Entire Load Range
•Programmable Slew Rate
• Programmable VID Offset and Droop on Both Outputs
• Programmable Switching Frequency for Both Outputs
• Excellent Dynamic Current Balance Between Phases
• Protection: OCP/WOC, OVP, PGOOD, and Thermal Monitor
• Small Footprint 48 Ld 6x6 QFN Package
- Pb-Free (RoHS Compliant)
Core Performance
August 6, 2012 FN8336.0
FIGURE 1. EFFICIENCY vs LOAD
1
FIGURE 2. V
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
Intersil (and design) and R3 Technology are trademarks owned by Intersil Corporation or one of its subsidiaries.
1-888-INTERSIL or 1-888-468-3774
All other trademarks mentioned are the property of their respective owners.
| Copyright Intersil Americas Inc. 2012. All Rights Reserved
OUT
vs LOAD
ISL6377
NB_PH1
NB_PH2
FIGURE 3. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING
BOOTX
UGATEX
PHASEX
LGATEX
BOOT2
UGATE2
PHASE2
LGATE2
BOOT1
UGATE1
PHASE1
LGATE1
PWM_Y
ISL6377
ISUMP
ISUMN
PH1
PH2
PH3
VO1
VO2
VO3
GND PAD
FB_NB
COMP_NB
VSEN_NB
VNB_SENSE
VDDP
PGOOD
ISEN1
ISEN2
ISEN3
ENABLE
PH1
PH2
PH3
VCORE
PH2
ISL6208
VO2
VO1
+12V
VO3
PH1
+12V
+12V
VO1
PH3
PH1
+12V
VNB
VDD
PWM2_NB
ISL6208
VNB1
NB_PH1
VNB2
NB_PH2
ISEN1_NB
ISEN2_NB
ISUMP_NB
ISUMN_NB
NB_PH1 NB_PH2
VNB1
VNB2
NTC_NB
IMON
IMON_NB
PWROK
SVT
SVD
µP
SVC
VDDIO
NTC
VR_HOT_L
THERMAL INDICATOR
FCCM_NB
VCORE_SENSE
FB
COMP
VSEN
RTN
+12V
NTC
NTC
Cn
Cn
Ri
Ri
*OPTIONAL
*
*
*OPTIONAL
*
*
ISEN4
PH4
VO4
PH4
PWM4
ISL6208
+12V
VO4
PH4
PGOOD_NB
Simplified Application Circuit for High Power CPU Core
2
FN8336.0
August 6, 2012
ISL6377
FIGURE 4. TYPICAL APPLICATION CIRCUIT USING INDUCTOR DCR SENSING
BOOTX
UGATEX
PHASEX
LGATEX
BOOT2
UGATE2
PHASE2
LGATE2
BOOT1
UGATE1
PHASE1
LGATE1
ISL6377
GND PAD
VCORE_SENSE
FB_NB
COMP_NB
VSEN_NB
VNB_SENSE
VDDP
PGOOD
ENABLE
VCORE
PH2
ISL6208
VO2
VO1
+12V
VNB1
PH1
+12V
+12V
VO1
NB_PH1
PH1
+12V
VNB
VDD
PWM2_NB
ISL6208
V03
PH3
VNB2
NB_PH2
NTC_NB
IMON
IMON_NB
PWROK
SVT
SVD
µP
SVC
VDDIO
NTC
VR_HOT_L
THERMAL INDICATOR
FB
COMP
VSEN
RTN
FCCM_NB
PWM_Y
+12V
NB_PH1
NB_PH2
ISEN1_NB
ISEN2_NB
ISUMP_NB
ISUMN_NB
NB_PH1 NB_PH2
VNB1
VNB2
ISUMP
ISUMN
PH1
PH2
PH3
VO1
VO2
VO3
ISEN1
ISEN2
ISEN3
PH1
PH2
PH3
NTC
NTC
Cn
Cn
Ri
Ri
*OPTIONAL
*
*
*OPTIONAL
*
*
PWM4
ISL6208
V04
PH4
+12V
ISEN4PH4
VO4
PH4
PGOOD_NB
Simplified Application Circuit with 3 Internal Drivers Used for Core
FN8336.0
August 6, 2012
3
Simplified Application Circuit for Mid-Power CPUs [3+1 Configuration]
FIGURE 5. TYPICAL APPLICATION CIRCUIT USING RESISTOR SENSING
BOOT2
UGATE2
PHASE2
LGATE2
BOOT1
UGATE1
PHASE1
LGATE1
PWM2_NB
ISL6377
ISUMP
ISUMN
VP1
VP2
VN1
VN2
GND PAD
FB_NB
COMP_NB
VSEN_NB
VNB_SENSE
VDDP
PGOOD
ISEN1
ISEN2
ISEN3
ENABLE
VP1
VP2
VCORE
VP2
VN2
+12V
+12V
VNB
VDD
PWM_Y
ISL6208
NBN
NBP
NTC_NB
IMON
IMON_NB
PWROK
SVT
SVD
µP
SVC
VDDIO
NTC
VR_HOT_L
Thermal Indicator
FCCM_NB
VCORE_SENSE
FB
COMP
VSEN
RTN
+12V
+5V
ISEN1_NB
ISEN2_NB
ISUMP_NB
ISUMN_NB
NBP
NBN
10kΩ*
OPEN
NTC
NTC
* Resistor required or ISEN1_NB will pull HIGH if left open and disable Channel 1.
VP1
VN1
Cn
Cn
Ri
Ri
*OPTIONAL
*
*
*OPTIONAL
*
*
PWM4
OPEN
ISEN4
+5V
BOOTX
UGATEX
PHASEX
LGATEX
+12V
VP3
VN3
VP3
VN3
VP3
PGOOD_NB
ISL6377
4
FN8336.0
August 6, 2012
Block Diagram
RTN
E/A
FB
IDROOP
CURRENT
SENSE
ISUMP
ISUMN
COMP
DRIVER
DRIVER
LGATE1
PHASE1
UGATE1
BOOT1
VCCP
OV FAULT
PGOOD
_
+
_
+
+
+
DRIVER
DRIVER
LGATE2
PHASE2
UGATE2
BOOT2
IBAL FAULT
OC FAULT
PWM_Y
ISEN3
ISEN2
ISEN1
CURRENT
BALANCING
DIGITAL
INTERFACE
PWROK
SVC
SVD
DRIVER
DRIVER
LGATEX
PHASEX
UGATEX
BOOTX
OV FAULT
PGOOD_NB
CORE_I
DAC1
NB_I
DAC2
TEMP
MONITOR
NTC_NB
NTC
VR_HOT_L
T_MONITOR
OFFSET
FREQ
SLEWRATE
CONFIG
PROG
ENABLE
TELEMETRY
D/A
A/D IDROOP
IDROOP_NB
RTN
E/A
FB_NB
IDROOP_NB
CURRENT
SENSE
ISUMP_NB
ISUMN_NB
COMP_NB
VR2
MODULATOR
_
+
_
+
+
+
VR1
MODULATOR
VDD
GND
ISEN1_NB
ISEN2_NB
CURRENT
BALANCING
IBAL FAULT
PWM2_NB
SVT
FLOATING
DRIVER &
PWM
CONFIG
LOGIC
OC FAULT
CURRENT
A/D
IMON
IMON_NB
VSEN
VSEN_NB
VDDIO
CORE_I
NB_I
CORE_V
NB_V
NB_V
VOLTAGE
A/D
CORE_V
VOLTAGE
A/D
ISEN4
PWM4
FCCM_NB
ISL6377
Σ
5
Σ
FN8336.0
August 6, 2012
ISL6377
1
48
GND PAD
(BOTTOM)
C
O
M
P
_
N
B
I
S
U
M
P
_
N
B
2
I
S
E
N
1
_
N
B
3
ISEN2_NB
4
IMON_NB
5
6
SVC
7
PWROK
8
SVD
9
VDDIO
10
SVT
11
VR_HOT_L
12
NTC
47
P
G
O
O
D
_
N
B
46
F
C
C
M
_
N
B
45
V
S
E
N
_
N
B
44
P
W
M
2
_
N
B
43
L
G
A
T
E
X
42 41 40
N
T
C
_
N
B
39
P
H
A
S
E
X
38
U
G
A
T
E
X
37
B
O
O
T
X
36
PWM4
35
34
BOOT2
33
UGATE2
32
PHASE2
31
LGATE2
30
VDDP
29
VDD
28
PWM_Y
27
LGATE1
26
PHASE1
25
UGATE1
1
3
I
S
E
N
1
1
4
I
S
U
M
P
1
5
I
S
U
M
N
1
6
V
S
E
N
1
7
I
M
O
N
1
8
F
B
192
0
C
O
M
P
2
1
I
S
E
N
4
2
2
P
G
O
O
D
2
3
R
T
N
37
2
4
I
S
E
N
2
ENABLE
I
S
E
N
3
F
B
_
N
B
I
S
U
M
N
_
N
B
B
O
O
T
1
Pin Configuration
ISL6377
(48 LD QFN)
TOP VIEW
Pin Descriptions
PIN NUMBER SYMBOL DESCRIPTION
1 ISEN2_NB Individual current sensing for Channel 2 of the Northbridge VR. When ISEN2_NB is pulled to +5V, the
controller will disable Channel 2 and the Northbridge VR will run single-phase.
2 NTC_NB Thermistor input to VR_HOT_L circuit to monitor Northbridge VR temperature.
3 IMON_NB Northbridge output current monitor. A current proportional to the Northbridge VR output current is
sourced from this pin.
4SVC
5 VR_HOT_L Thermal indicator signal to AMD CPU. Thermal overload open drain output indicator active LOW.
6 SVD Serial VID data bidirectional signal from the CPU processor master device to the VR.
7 VDDIO VDDIO is the processor memory interface power rail and this pin serves as the reference to the controller
8 SVT Serial VID Telemetry (SVT) data line input to the CPU from the controller IC. Telemetry and VID-on-the-fly
9 ENABLE Enable input. A high level logic on this pin enables both VRs.
10 PWROK System power-good input. When this pin is high, the SVI 2 interface is active and the I
11 NTC Thermistor input to VR_HOT_L circuit to monitor Core VR temperature.
12 ISEN4 ISEN4 is the individual current sensing for Channel 4. When ISEN4 is pulled to +5V, the controller disables
13 ISEN3 ISEN3 is the individual current sensing for Channel 3. When ISEN3 is pulled to +5V, the controller disables
14 ISEN2 Individual current sensing for Channel 2 of the Core VR. When ISEN2 is pulled to +5V, the controller
6
Serial VID clock input from the CPU processor master device.
IC for this processor I/O signal level.
complete signal provided from this pin.
running. While this pin is low, the SVC and SVD input states determine the pre-PWROK metal VID. This pin must be low prior to the ISL6377 PGOOD output going high per the AMD SVI 2.0 Controller Guidelines.
Channel 4, and the Core VR runs in three-phase mode.
Channel 3, and the Core VR runs in two-phase mode.
disables Channel 2, and the Core VR runs in single-phase mode.
2
C protocol is
August 6, 2012
FN8336.0
ISL6377
Pin Descriptions (Continued)
PIN NUMBER SYMBOL DESCRIPTION
15 ISEN1 Individual current sensing for Channel 1 of the Core VR. If ISEN2 is tied to +5V, this pin cannot be left
open and must be tied to GND with a 10k resistor. If ISEN1 is tied to +5V, the Core portion of the IC is shut down.
16 ISUMP Non-inverting input of the transconductance amplifier for current monitor and load line of Core output.
17 ISUMN Inverting input of the transconductance amplifier for current monitor and load line of Core output.
18 VSEN Output voltage sense pin for the Core controller. Connect to the +sense pin of the microprocessor die.
19 RTN Output voltage sense return pin for both Core VR and Northbridge VR. Connect to the -sense pin of the
microprocessor die.
20 IMON Core output current monitor. A current proportional to the Core VR output current is sourced from this pin.
21 FB Output voltage feedback to the inverting input of the Core controller error amplifier.
22 COMP Core controller error amplifier output. A resistor from COMP to GND sets the Core VR offset voltage.
23 PGOOD Open-drain output to indicate the Core portion of the IC is ready to supply regulated voltage. Pull up
24 BOOT1 Connect an MLCC capacitor across the BOOT1 and the PHASE1 pins. The boot capacitor is charged,
25 UGATE1 Output of the Phase 1 high-side MOSFET gate driver of the Core VR. Connect the UGATE1 pin to the gate
26 PHASE1 Current return path for the Phase 1 high-side MOSFET gate driver of VR1. Conne ct the PHASE1 pin to the
27 LGATE1 Output of the Phase 1 low-side MOSFET gate driver of the Core VR. Connect the LGATE1 pin to the gate
28 PWM_Y Floating PWM output used for either Channel 3 of the Core VR or Channel 1 of the Northbridge VR
29 VDD 5V bias power. A resistor [2] and a decoupling capacitor should be used from the +5V supply. A high
30 VDDP Input voltage bias for the internal gate drivers. Connect +5V to the VDDP pin. Decouple with at least 1µF
31 LGATE2 Output of the Phase 2 low-side MOSFET gate driver of the Core VR. Connect the LGATE2 pin to the gate
32 PHASE2 Current return path for the Phase 2 high-side MOSFET gate driver of the Core VR. Connect the PHASE2
33 UGATE2 Output of the Phase 2 high-side MOSFET gate driver of the Core VR. Connect the UGATE2 pin to the gate
34 BOOT2 Connect an MLCC capacitor across the BOOT2 and PHASE2 pins. The boot capacitor is charged, through
35 PWM4 PWM output of Channel 4 of the Core VR. Disabled if ISEN4 is tied to +5V.
36 BOOTX Boot connection of the programmable internal driver used for either Channel 3 of the Core VR or
37 UGATEX High-side MOSFET gate driver portion of the programmable internal driver used for either Channel 3 of
externally to VDD or 3.3V through a resistor.
through an internal boot diode connected from the VDDP pin to the BOOT1 pin, each time the PHASE1 pin drops below VDDP minus the voltage dropped across the internal boot diode.
of the Phase 1 high-side MOSFET(s).
node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of Phase 1.
of the Phase 1 low-side MOSFET(s).
depending on the FCCM_NB resistor connected between FCCM_NB and GND.
quality, X7R dielectric MLCC capacitor is recommended.
of capacitance to GND. A high quality, X7R dielectric MLCC capacitor is recommended.
of the Phase 2 low-side MOSFET(s).
pin to the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of Phase 2.
of the Phase 2 high-side MOSFET(s).
an internal boot diode connected from the VDDP pin to the BOOT2 pin, each time the PHASE2 pin drops below VDDP minus the voltage dropped across the internal boot diode.
Channel 1 of the Northbridge VR based on the configuration state selected by the FCCM_NB resistor. Connect an MLCC capacitor across the BOOT1X and the PHASEX pins. The boot capacitor is charged, through an internal boot diode connected from the VDDP pin to the BOOTX pin, each time the PHASEX pin drops below VDDP minus the voltage dropped across the internal boot diode.
the Core VR or Channel 1 of the Northbridge VR based on the configuration state selected by the FCCM_NB resistor. Connect the UGATEX pin to the gate of the high-side MOSFET(s) for either Phase 3 of the Core VR or Phase 1 of the Northbridge VR based on the configuration state selected.
7
FN8336.0
August 6, 2012
ISL6377
Pin Descriptions (Continued)
PIN NUMBER SYMBOL DESCRIPTION
38 PHASEX Phase connection of the programmable internal driver used for either Channel 3 of the Core VR or
Channel 1 of the Northbridge VR based on the configuration state selected by the FCCM_NB resistor. Current return path for the high-side MOSFET gate driver of the floating internal driver. Connect the PHASEX pin to the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of either Phase 3 of the Core VR or Phase 1 of the Northbridge VR based on the configuration state selected.
39 LGATEX Low-side MOSFET gate driver portion of floating internal driver used for either Channel 3 of the Core VR
or Channel 1 of the Northbridge VR based on the configuration state selected by the FCCM_NB resistor. Connect the LGATEX pin to the gate of the low-side MOSFET(s) for either Phase 3 of the Core VR or Phase 1 of the Northbridge VR based on the configuration state selected.
40 PWM2_NB PWM output for Channel 2 of the Northbridge VR. Disabled when ISEN2_NB is tied to +5V.
41 FCCM_NB Diode emulation control signal for Intersil MOSFET Drivers. When FCCM_NB is LOW, diode emulation at
42 PGOOD_NB Open-drain output to indicate the Northbridge portion of the IC is ready to supply regulated voltage.
43 COMP_NB Northbridge VR error amplifier output. A resistor from COMP_NB to GND sets the Northbridge VR offset
44 FB_NB Output voltage feedback to the inverting input of the Northbridge controller error amplifier.
45 VSEN_NB Output voltage sense pin for the Northbridge controller. Connect to the +sense pin of the microprocessor
46 ISUMN_NB Inverting input of the transconductance amplifier for current monitor and load line of the Northbridge VR.
47 ISUMP_NB Non-inverting input of the transconductance amplifier for current monitor and load line of the
48 ISEN1_NB Individual current sensing for Channel 1 of the Northb ridge VR . If ISEN2_NB is tied to +5V, this pin cann ot
GND (Bottom Pad) Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin.
the driver this pin connects to is allowed. A resistor from FCCM_NB pin to GND configures the PWM_Y and floating internal gate driver [BOOTX, UGATEX, PHASEX, LGATEX pins] to support Phase 3 of the Core VR and Phase 1 of the Northbridge VR. The FCCM_NB resistor value also is used to set the slew rate for the Core VR and Northbridge VR.
Pull-up externally to VDDP or 3.3V through a resistor.
voltage and is used to set the switching frequency for the Core VR and Northbridge VR.
die.
Northbridge VR.
be left open and must be tied to GND with a 10k resistor. If ISEN1_NB is tied to +5V, the Northbridge portion of the IC is shutdown.
Ordering Information
PART NUMBER
(Notes 1, 2, 3)
ISL6377HRZ ISL6377 HRZ -10 to +100 48 Ld 6x6 QFN L48.6x6B
ISL6377IRZ ISL6377 IRZ -40 to +85 48 Ld 6x6 QFN L48.6x6B
NOTES:
1. Add “-T*” suffix for tape and reel. Please refer to TB347
2. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL6377
8
PART
MARKING
TEMP.
RANGE (°C)
for details on reel specifications.
. For more information on MSL please see tech brief TB363.
PACKAGE
(Pb-free)
PKG.
DWG. #
August 6, 2012
FN8336.0
ISL6377
Table of Contents
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Gate Driver Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Multiphase R3™ Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Diode Emulation and Period Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Start-up Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Voltage Regulation and Load Line Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Differential Sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Phase Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Dynamic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Adaptive Body Diode Conduction Time Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Resistor Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VR Offset Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Floating DriverX and PWM_Y Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VID-on-the-Fly Slew Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
CCM Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AMD Serial VID Interface 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Pre-PWROK Metal VID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SVI Interface Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
VID-on-the-Fly Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SVI Data Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SVI Bus Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Power States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Dynamic Load Line Slope Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Dynamic Offset Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Telemetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Protection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Overcurrent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Current-Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Overvoltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Thermal Monitor [NTC, NTC_NB] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fault Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Interface Pin Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Key Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Inductor DCR Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Resistor Current-Sensing Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Load Line Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Current Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Thermal Monitor Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
PCB Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9
FN8336.0
August 6, 2012
ISL6377
Absolute Maximum Ratings Thermal Information
Supply Voltage, V
Boot Voltage (BOOT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +33V
Boot to Phase Voltage (BOOT-PHASE) . . . . . . . . . . . . . . . . -0.3V to +7V(DC)
Phase Voltage (PHASE) . . . . . . . . . . . . . . . . -7V (<20ns Pulse Width, 10µJ)
UGATE Voltage (UGATE) . . . . . . . . . .PHASE - 0.3V (DC) to BOOTPHASE - 5V
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (VDD + 0.3V)
Open Drain Outputs, PGOOD, PGOOD_NB, VR_HOT_L. . . . . . . -0.3V to +7V
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTES:
4. θ
is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech
JA
Brief TB379
5. For θ
DD, VDDP
.
, the “case temp” location is the center of the exposed metal pad on the package underside.
JC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V
-0.3V to +9V (<10ns)
(<20ns Pulse Width, 10µJ) to BOOT LGATE Voltage
-2.5V (<20ns Pulse Width, 5µJ) to VDD + 0.3V
Thermal Resistance (Typical) θ
48 Ld QFN Package (Notes 4, 5) . . . . . . . . 29 3.5
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+150°C
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
(°C/W) θJC (°C/W)
JA
Recommended Operating Conditions
Supply Voltage, VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5V ±5%
Input Supply Voltage, V
Ambient Temperature HRZ . . . . . . . . . . . . . . . . . . . .-10°C to +100°C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +125°C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V to 12.6V
IN
IRZ . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C
Electrical Specifications Operating Conditions: V
otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +100°C.
PARAMETER SYMBOL TEST CONDITIONS
INPUT POWER SUPPLY
+5V Supply Current I
POWER-ON-RESET THRESHOLDS
VDD POR Threshold VDD_POR
SYSTEM AND REFERENCES
System Accuracy HRZ
Maximum Output Voltage V
Minimum Output Voltage V
CHANNEL FREQUENCY
Nominal Channel Frequency f
Adjustment Range 300 450 kHz
AMPLIFIERS
Current-Sense Amplifier Input Offset HRZ I
Error Amp DC Gain A
Error Amp Gain-Bandwidth Product GBW C
ISEN
Input Bias Current 20 nA
VDD
VDD_POR
%Error (V
IRZ
%Error (V
OUT(max)
OUT(min)
SW(nom)
IRZ I
v0
ENABLE = 1V 8 11 mA
ENABLE = 0V 1 µA
VDD rising 4.35 4.5 V
r
VDD falling 4.00 4.15 V
f
No load; closed loop, active mode range, VID = 0.75V to 1.55V -0.5 +0.5 %
OUT)
VID = 0.25V to 0.74375V -10 +10 mV
No load; closed loop, active mode range,
)
VID = 0.75V to 1.55V -0.8 +0.8 %
OUT
VID = 0.25V to 0.74375V -12 +12 mV
VID = [00000000] 1.55 V
VID = [11111111] 0.0 V
= 5V, TA = -10°C to +100°C (HRZ), TA = -40°C to +85°C (IRZ), fSW = 300kHz, unless
DD
MIN
(Note 6) TYP
280 300 320 kHz
= 0A -0.15 +0.15 mV
FB
= 0A -0.20 +0.20 mV
FB
119 dB
= 20pF 17 MHz
L
MAX
(Note 6) UNITS
10
FN8336.0
August 6, 2012
ISL6377
Electrical Specifications Operating Conditions: V
= 5V, TA = -10°C to +100°C (HRZ), TA = -40°C to +85°C (IRZ), fSW = 300kHz, unless
DD
otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +100°C. (Continued)
PARAMETER SYMBOL TEST CONDITIONS
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
POWER-GOOD (PGOOD & PGOOD_NB) AND PROTECTION MONITORS
I
PGOOD Low Voltage V
PGOOD Leakage Current I
OL
OH
= 4mA 0.4 V
PGOOD
PGOOD = 3.3V -1 1 µA
PWROK High Threshold 750 mV
VR_HOT_L Pull-down 11
PWROK Leakage Current 1 µA
VR_HOT_L Leakage Current 1 µA
GATE DRIVER
UGATE Pull-Up Resistance R
UGATE Source Current I
UGATE Sink Resistance R
UGATE Sink Current I
LGATE Pull-Up Resistance R
LGATE Source Current I
LGATE Sink Resistance R
LGATE Sink Current I
UGATE to LGATE De ad ti me t
LGATE to UGATE De ad ti me t
UGPU
UGSRC
UGPD
UGSNK
LGPU
LGSRC
LGPD
LGSNK
UGFLGR
LGFUGR
200mA Source Current 1.0 1.5
UGATE - PHASE = 2.5V 2.0 A
250mA Sink Current 1.0 1.5
UGATE - PHASE = 2.5V 2.0 A
250mA Source Current 1.0 1.5
LGATE - VSSP = 2.5V 2.0 A
250mA Sink Current 0.5 0.9
LGATE - VSSP = 2.5V 4.0 A
UGATE falling to LGATE rising, no load 23 ns
LGATE falling to UGATE rising, no load 28 ns
PROTECTION
Overvoltage Threshold OV
Undervoltage Threshold OV
H
H
VSEN rising above setpoint for >1µs 275 325 375 mV
VSEN falls below setpoint for >1µs 275 325 375 mV
Current Imbalance Threshold One ISEN above another ISEN for >1.2ms 9 mV
Way Overcurrent Trip Threshold [IMONx Current Based Detection]
Overcurrent Trip Threshold [IMONx Voltage Based Detection]
IMONx
V
IMONx_OCP
WOC
All states, I
All states, I I
= 11.25µA, R
IMONx
DROOP
DROOP
= 60µA, R
= 45µA,
= 135k
IMON
= 135k 15 µA
IMON
1.485 1.51 1.535 V
LOGIC THRESHOLDS
ENABLE Input Low V
ENABLE Input High V
ENABLE Leakage Current I
ENABLE
IL
IH
V
IH
HRZ 1.6 V
IRZ 1.65 V
ENABLE = 0V -1 01µA
1 V
ENABLE = 1V 18 35 µA
SVT Impedance 50
SVC, SVD Input Low V
SVC, SVD Input High V
IL
IH
% of VDDIO 30 %
% of VDDIO 70 %
SVC, SVD Leakage ENABLE = 0V, SVC, SVD = 0V and 1V -1 1 µA
ENABLE = 1V, SVC, SVD = 1V -5 1 µA
ENABLE = 1V, SVC, SVD = 0V -35 -20 -5 µA
PWM
PWM Output Low V
PWM Output High V
0L
0H
Sinking 5mA 1.0 V
Sourcing 5mA 3.5 V
PWM Tri-State Leakage PWM = 2.5V 0.5 µA
THERMAL MONITOR
NTC Source Current NTC = 0.6V 27 30 33 µA
NTC Thermal Warning Voltage 600 640 680 mV
11
FN8336.0
August 6, 2012
ISL6377
PWM
UGATE
LGATE
1V
1V
t
UGFLGR
t
RL
t
FU
t
RU
t
FL
t
LGFUGR
Electrical Specifications Operating Conditions: V
= 5V, TA = -10°C to +100°C (HRZ), TA = -40°C to +85°C (IRZ), fSW = 300kHz, unless
DD
otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +100°C. (Continued)
PARAMETER SYMBOL TEST CONDITIONS
NTC Thermal Warning Voltage
MIN
(Note 6) TYP
20 mV
MAX
(Note 6) UNITS
Hysteresis
NTC Thermal Shutdown Voltage 530 580 630 mV
SLEW RATE
VID-on-the-Fly Slew Rate Maximum Programmed 16 20 24 mV/µs
Minimum Programmed 8 10 12 mV/µs
NOTE:
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
Gate Driver Timing Diagram
12
FN8336.0
August 6, 2012
Loading...
+ 25 hidden pages