Intersil ISL62883CHRTZ, ISL62883CIRTZ Schematic [ru]

Multiphase PWM Regulator for IMVP-6.5™ Mobile CPUs and GPUs
ISL62883C
ISL62883C
The ISL62883C is a multiphase PWM buck regulator for miroprocessor or graphics processor core power supply. The multiphase buck converter uses interleaved phase to reduce the total output voltage ripple with each phase carrying a portion of the total load current, providing better system performance, superior thermal management, lower component cost, reduced power dissipation, and smaller implementation area. The ISL62883C uses two integrated gate drivers and an external gate driver to provide a complete solution. The PWM modulator is based on Intersil's Robust Ripple Regulator (R modulators, the R3™ modulator commands variable switching frequency during load transients, achieving faster transient response. With the same modulator, the switching frequency is reduced at light load, increasing the regulator efficiency.
The ISL62883C can be configured as CPU or graphics Vcore controller and is fully compliant with IMVP-6.5™ specifications. It responds to PSI# and DPRSLPVR signals by adding or dropping PWM3 and Phase 2 respectively, adjusting overcurrent protection threshold accordingly, and entering/exiting diode emulation mode. It reports the regulator output current through the IMON pin. It senses the current by using either discrete resistor or inductor DCR whose variation over temperature can be thermally compensated by a single NTC thermistor. It uses differential remote voltage sensing to accurately regulate the processor die voltage. The adaptive body diode conduction time reduction function minimizes the body diode conduction loss in diode emulation mode. User-selectable overshoot reduction function offers an option to aggressively reduce the output capacitors as well as the option to disable it for users concerned about increased system thermal stress. In 2-Phase configuration, the ISL62883C offers the FB2 function to optimize 1-Phase performance.
3
) technology™. Compared with traditional
Features
• Programmable 1, 2- or 3-Phase CPU or GPU Mode of Operation
• Precision Multiphase Core Voltage Regulation
- 0.5% System Accuracy Over-Temperature
- Enhanced Load Line Accuracy
• Microprocessor Voltage Identification Input
- 7-Bit VID Input, 0V to 1.500V in 12.5mV Steps
- Supports VID Changes On-The-Fly
• Supports Multiple Current Sensing Methods
- Lossless Inductor DCR Current Sensing
- Precision Resistor Current Sensing
• Supports PSI# and DPRSLPVR modes
• Superior Noise Immunity and Transient Response
• Current Monitor and Thermal Monitor
• Differential Remote Voltage Sensing
• High Efficiency Across Entire Load Range
• Two Integrated Gate Drivers
• Excellent Dynamic Current Balance
• FB2 Function Optimizes 1-Phase Mode Performance
• Adaptive Body Diode Conduction Time Reduction
• User-selectable Overshoot Reduction Function
• Small Footprint 40 Ld 5x5 TQFN Packages
• Pb-Free (RoHS Compliant)
Applications*(see page 42)
• Notebook Core Voltage Regulator
• Notebook GPU Voltage Regulator
Related Literature*(see page 42)
•See AN1460 for ISL62883/ISL62883C Evaluation Board Application Note “ISL62883EVAL2Z User Guide”
Load Line Regulation
(V)
OUT
V
March 18, 2010 FN7557.1
1
1.10
1.08
1.06
1.04
1.02
1.00
0.98
0.96
0.94
0.92 0 5 10 15 20 25 30 35 40 45 50 55 60 65
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774
VIN = 8V
VIN = 12V
VIN = 19V
I
(A)
OUT
| Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2009, 2010. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
ISL62883C
Ordering Information
PART NUMBER
(Note 3) PART MARKING
ISL62883CIRTZ (Note 2) 62883C IRTZ -40 to +100 40 Ld 5x5 TQFN L40.5x5
ISL62883CIRTZ-T (Notes 1, 2) 62883C IRTZ -40 to +100 40 Ld 5x5 TQFN L40.5x5
ISL62883CHRTZ (Note 2) 62883C HRTZ -10 to +100 40 Ld 5x5 TQFN L40.5x5
ISL62883CHRTZ-T (Notes 1, 2) 62883C HRTZ -10 to +100 40 Ld 5x5 TQFN L40.5x5
NOTES:
1. Please refer to TB347
for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL62883C see techbrief TB363
.
TEMP. RANGE
(°C)
PACKAGE
(Pb-Free)
PKG.
DWG. #
. For more information on MSL please
Pin Configuration
ISL62883C
(40 LD TQFN)
TOP VIEW
R V P
N
L S
O
R
_
P
R
D
V
39 38 37 36 35 34 33 32 31
6
4
5
D
D
D
I
I
I
V
V
V
GND PAD
(BOTTOM)
1
2
3
D
D
D
I
I
I
V
V
V
0 D
I V
30
29
28
27
26
25
24
23
22
21
BOOT2
UGATE2
PHASE2
VSSP2
LGATE2
VCCP
PWM3
LGATE1
VSSP1
PHASE1
PGOOD
PSI#
RBIAS
VR_TT#
NTC
VW
COMP
FB
ISEN3/FB2
ISEN2
# N
E _ K L C
40
1
2
3
4
5
6
7
8
9
10
11 12 13 14 15 16 17 18 19 20
RTN
VSEN
ISEN1
ISUM-
2
VIN
VDD
IMON
ISUM+
BOOT1
UGATE1
FN7557.1
March 18, 2010
ISL62883C
Functional Pin Descriptions
ISL62883C SYMBOL DESCRIPTION
- GND Signal common of the IC. Unless otherwise stated, signals are referenced to the GND pin.
1 PGOOD Power-Good open-drain output indicating when the regulator is able to supply regulated
2 PSI# Low load current indicator input. When asserted low, indicates a reduced load-current condition.
3 RBIAS A resistor to GND sets internal current reference. Use 147kΩ or 47kΩ. The choice of Rbias value,
4 VR_TT# Thermal overload output indicator.
5NTCThermistor input to VR_TT# circuit.
6 VW A resistor from this pin to COMP programs the switching frequency (8kΩ gives approximately
7 COMP This pin is the output of the error amplifier. Also, a resistor across this pin and GND adjusts the
8 FB This pin is the inverting input of the error amplifier.
9 INSE3/FB2 When the ISL62883C is configured in 3-phase mode, this pin is ISEN3. ISEN3 is the individual
10 ISEN2 Individual current sensing for Phase 2. When ISEN2 is pulled to 5V VDD, the controller will
11 ISEN1 Individual current sensing for phase 1.
12 VSEN Remote core voltage sense input. Connect to microprocessor die.
13 RTN Remote voltage sensing return. Connect to ground at microprocessor die.
14, 15 ISUM- and
ISUM+
16 VDD 5V bias power.
17 VIN Battery supply voltage, used for feed-forward.
18 IMON An analog output. IMON outputs a current proportional to the regulator output current.
19 BOOT1 Connect an MLCC capacitor across the BOOT1 and the PHASE1 pins. The boot capacitor is
20 UGATE1 Output of the Phase-1 high-side MOSFET gate driver. Connect the UGATE1 pin to the gate of the
21 PHASE1 Current return path for the Phase-1 high-side MOSFET gate driver. Connect the PHASE1 pin to
22 VSSP1 Current return path for the Phase-1 low-side MOSFET gate driver. Connect the VSSP1 pin to the
23 LGATE1 Output of the Phase-1 low-side MOSFET gate driver. Connect the LGATE1 pin to the gate of the
24 PWM3 PWM output for Phase 3. When PWM3 is pulled to 5V VDD, the controller will disable Phase-3
voltage. Pull up externally with a 680Ω resistor to VCCP or 1.9kΩ to 3.3V.
together with the ISEN2 pin configuration and the external resistance from the COMP pin to GND, programs the controller to enable/disable the overshoot reduction function and to select the CPU/GPU mode.
300kHz).
overcurrent threshold.
current sensing for phase 3. When the ISL62883C is configured in 2-phase mode, this pin is FB2. There is a switch between the FB2 pin and the FB pin. The switch is on in 2-phase mode and is off in 1-phase mode. The components connecting to FB2 are used to adjust the compensation in 1-phase mode to achieve optimum performance.
disable Phase 2.
Droop current sense input.
charged through an internal boot diode connected from the VCCP pin to the BOOT1 pin, each time the PHASE1 pin drops below VCCP minus the voltage dropped across the internal boot diode.
Phase-1 high-side MOSFET.
the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of Phase-1.
source of the Phase-1 low-side MOSFET through a low impedance path, preferably in parallel with the traces connecting the LGATE1a and the LGATE1b pins to the gates of the Phase-1 low­side MOSFETs.
Phase-1 low-side MOSFET.
and allow other phases to operate.
3
FN7557.1
March 18, 2010
ISL62883C
Functional Pin Descriptions (Continued)
ISL62883C SYMBOL DESCRIPTION
25 VCCP Input voltage bias for the internal gate drivers. Connect +5V to the VCCP pin. Decouple with at
least 1µF of an MLCC capacitor to VSSP1 and VSSP2 pins respectively.
26 LGATE2 Output of the Phase-2 low-side MOSFET gate driver. Connect the LGATE2 pin to the gate of the
Phase-2 low-side MOSFET.
27 VSSP2 Current return path for the Phase-2 converter low-side MOSFET gate driver. Connect the VSSP2
28 PHASE2 Current return path for the Phase-2 high-side MOSFET gate driver. Connect the PHASE2 pin to
29 UGATE2 Output of the Phase-2 high-side MOSFET gate driver. Connect the UGATE2 pin to the gate of the
30 BOOT2 Connect an MLCC capacitor across the BOOT2 and the PHASE2 pins. The boot capacitor is
31 thru 37 VID0 thru
VID6
38 VR_ON Voltage regulator enable input. A high level logic signal on this pin enables the regulator.
39 DPRSLPVR Deeper sleep enable signal. A high level logic signal on this pin indicates that the microprocessor
40 CLK_EN# Open drain output to enable system PLL clock. It goes low 13 switching cycles after Vcore is
pad BOTTOM The bottom pad of ISL62883C is electrically connected to the GND pin inside the IC.It should
pin to the source of the Phase-2 low-side MOSFET through a low impedance path, preferably in parallel with the trace connecting the LGATE2 pin to the gate of the Phase-2 low-side MOSFET.
the node consisting of the high-side MOSFET source, the low-side MOSFET drain, and the output inductor of Phase-2.
Phase-2 high-side MOSFET.
charged through an internal boot diode connected from the VCCP pin to the BOOT2 pin, each time the PHASE2 pin drops below VCCP minus the voltage dropped across the internal boot diode.
VID input with VID0 = LSB and VID6 = MSB.
is in deeper sleep mode.
within 10% of Vboot.
also be used as the thermal pad for heat removal.
4
FN7557.1
March 18, 2010
Block Diagram
Σ
VR_ON
PSI#
DPRSLPVR
RBIAS
VID0
VID1
VID2
VID3
VID4
MODE
CONTROL
DAC AND
SOFT-
START
VIN
VSEN
ISEN1 ISEN3 ISEN2
IBAL2 IBAL3 IBAL1
VIN
CLOCK
VDAC
COMP VW
ISL62883C
PGOOD CLK_EN#
CURRENT BALANCE
IBAL
PROTECTION
WOC OC
FLT
IBAL2 VIN VDAC
MODULATOR
COMP
PGOOD &
CLK_EN#
LOGIC
6µA
54µA
SHOOT-THROUGH
PROTECTION
PWM CONTROL LOGIC
1.20V
1.24V
DRIVER
DRIVER
VDD
VR_TT#
NTC
BOOT2
UGATE2
PHASE2
LGATE2
VID5
VID6
RTN
FB
COMP
VW
IMON
ISUM+
ISUM-
IBAL3 VIN VDAC
+
+
IDROOP
IMON
+
_
CURRENT
SENSE
Σ
+
E/A
_
+
WOC
_
2.5X
CURRENT COMPARATORS
+
OC
_
MODULATOR
COMP
IBAL1 VIN VDAC
MODULATOR
COMP
NUMBER OF
PHASES
GAIN
SELECT
60µA
+
PWM CONTROL LOGIC
+
DRIVER
SHOOT-THROU GH
PROTECTION
DRIVER
ADJ. OCP
THRESHOLD
COMP
VSSP2
PWM3
BOOT1
UGATE1
PHASE1
VCCP
LGATE1
VSSP1
GND
5
FN7557.1
March 18, 2010
ISL62883C
Table of Contents
Ordering Information ......................................................................................................................... 2
Pin Configuration ................................................................................................................................ 2
Functional Pin Descriptions ................................................................................................................ 3
Block Diagram .................................................................................................................................... 5
Table of Contents ............................................................................................................................... 6
Absolute Maximum Ratings ................................................................................................................ 7
Thermal Information .......................................................................................................................... 7
Recommended Operating Conditions .................................................................................................. 7
Electrical Specifications ...................................................................................................................... 7
Gate Driver Timing Diagram ............................................................................................................. 10
Simplified Application Circuits .......................................................................................................... 10
Theory of Operation .......................................................................................................................... 13
Diode Emulation and Period Stretching ............................................................................................... 14
Start-up Timing .............................................................................................................................. 15
Voltage Regulation and Load Line Implementation ............................................................................... 15
Differential Sensing ......................................................................................................................... 17
Phase Current Balancing .................................................................................................................. 18
Modes of Operation ......................................................................................................................... 20
Dynamic Operation .......................................................................................................................... 20
Protections ..................................................................................................................................... 21
FB2 Function .................................................................................................................................. 22
Adaptive Body Diode Conduction Time Reduction ................................................................................. 22
Overshoot Reduction Function ........................................................................................................... 22
Key Component Selection ................................................................................................................. 23
R
Inductor DCR Current-Sensing Network ............................................................................................. 23
Resistor Current-Sensing Network .................................................................................................... 25
Overcurrent Protection..................................................................................................................... 25
Current Monitor .............................................................................................................................. 26
Compensator .................................................................................................................................. 27
Optional Slew Rate Compensation Circuit For 1-Tick VID Transition ........................................................ 29
Voltage Regulator Thermal Throttling ................................................................................................. 30
Current Balancing ........................................................................................................................... 30
Layout Guidelines ............................................................................................................................. 30
1-PHASE GPU Application Reference Design Bill of Materials ............................................................ 34
2-PHASE CPU Application Reference Design Bill of Materials ............................................................ 35
Typical Performance ......................................................................................................................... 37
Products ........................................................................................................................................... 42
Package Outline Drawing ................................................................................................................. 43
............................................................................................................................................ 23
BIAS
6
FN7557.1
March 18, 2010
ISL62883C
Absolute Maximum Ratings Thermal Information
Supply Voltage, VDD. . . . . . . . . . . . . . . . . . . .-0.3V to +7V
Battery Voltage, VIN. . . . . . . . . . . . . . . . . . . . . . . . . +28V
Boot Voltage (BOOT) . . . . . . . . . . . . . . . . . . -0.3V to +33V
Boot to Phase Voltage (BOOT-PHASE) . . . . -0.3V to +7V(DC)
. . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +9V(<10ns)
Phase Voltage (PHASE) . . . . . -7V (<20ns Pulse Width, 10µJ)
UGATE Voltage (UGATE) . . . . . . . PHASE-0.3V (DC) to BOOT
. . . . . . . . . PHASE-5V (<20ns Pulse Width, 10µJ) to BOOT
LGATE Voltage
. . . . . . . . . . . -2.5V (<20ns Pulse Width, 5µJ) to VDD+0.3V
All Other Pins. . . . . . . . . . . . . . . . . . -0.3V to (VDD +0.3V)
Open Drain Outputs, PGOOD, VR_TT#,
CLK_EN# . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +7V
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTE:
is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach”
4. θ
JA
features. See Tech Brief TB379.
5. For θ
, the “case temp” location is the center of the exposed metal pad on the package underside.
JC
Thermal Resistance (Typical) θ
(°C/W) θJC (°C/W)
JA
40 Ld TQFN Package (Notes 4, 5). . 31 2
Maximum Junction Temperature . . . . . . . . . . . . . . . +150°C
Maximum Storage Temperature Range . . . -65°C to +150°C Maximum Junction Temperature (Plastic Package). . . +150°C
Storage Temperature Range . . . . . . . . . . . -65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Recommended Operating Conditions
Supply Voltage, VDD . . . . . . . . . . . . . . . . . . . . . +5V ±5%
Battery Voltage, VIN . . . . . . . . . . . . . . . . . . . +4.5V to 25V
Ambient Temperature
ISL62883CHRTZ. . . . . . . . . . . . . . . . . . -10°C to +100°C
ISL62883CIRTZ . . . . . . . . . . . . . . . . . . -40°C to +100°C
Junction Temperature
ISL62883CHRTZ. . . . . . . . . . . . . . . . . . -10°C to +125°C
ISL62883CIRTZ . . . . . . . . . . . . . . . . . . -40°C to +125°C
Electrical Specifications Operating Conditions: VDD = 5V, T
unless otherwise noted. Boldface limits apply over the operating temperature range,
-40°C to +100°C.
PARAMETER SYMBOL TEST CONDITIONS
INPUT POWER SUPPLY
+5V Supply Current I
Battery Supply Current I
Input Resistance R
V
IN
VDD
VIN
VIN
Power-On-Reset Threshold POR
POR
SYSTEM AND REFERENCES
System Accuracy HRTZ
%Error
(V
CC_CORE
IRTZ
%Error
(V
CC_CORE
V
BOOT
Maximum Output Voltage V
Minimum Output Voltage V
Voltag e R
R
BIAS
CC_CORE(max)
CC_CORE(min)
r
f
VR_ON = 1V 4 4.6 mA
VR_ON = 0V 1 µA
VR_ON = 0V 1 µA VR_ON = 1V 900 kΩ
VDD rising 4.35 4.5 V
VDD falling 4.00 4.15 V
No load; closed loop, active mode range VID = 0.75V to 1.50V, -0.5 +0.5 %
)
VID = 0.5V to 0.7375V -8 +8 mV
VID = 0.3V to 0.4875V -15 +15 mV
No load; closed loop, active mode range VID = 0.75V to 1.50V -0.8 +0.8 %
)
VID = 0.5V to 0.7375V -10 +10 mV
VID = 0.3V to 0.4875V -18 +18 mV
ISL62883CHRTZ 1.0945 1.100 1.1055 V
ISL62883CIRTZ 1.0912 1.100 1.1088 V
VID = [0000000] 1.500 V
VID = [1100000] 0.300 V
= 147kΩ 1.45 1.47 1.49 V
BIAS
= -40°C to +100°C, f
A
= 300kHz,
SW
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
7
FN7557.1
March 18, 2010
ISL62883C
Electrical Specifications Operating Conditions: VDD = 5V, T
unless otherwise noted. Boldface limits apply over the operating temperature range,
= -40°C to +100°C, f
A
= 300kHz,
SW
-40°C to +100°C. (Continued)
PARAMETER SYMBOL TEST CONDITIONS
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
CHANNEL FREQUENCY
R
Nominal Channel Frequency f
SW(nom)
= 7kΩ, 3-channel operation,
fset
V
= 1V
COMP
285 300 315 kHz
Adjustment Range 200 500 kHz
AMPLIFIERS
Current-Sense Amplifier Input
= 0A -0.15 +0.15 mV
I
FB
Offset
Error Amp DC Gain (Note 7) A
Error Amp Gain-Bandwidth
GBW C
Product (Note 7)
v0
= 20pF 18 MHz
L
90 dB
ISEN
Imbalance Voltage Maximum of ISENs - Minimum of
1 mV
ISENs
Input Bias Current 20 nA
POWER-GOOD AND PROTECTION MONITORS
PGOOD Low Voltage V
PGOOD Leakage Current I
OL
OH
I
PGOOD = 3.3V -1 1 µA
= 4mA 0.26 0.4 V
PGOOD
PGOOD Delay tpgd CLK_ENABLE# LOW to PGOOD HIGH 6.3 7.6 8.9 ms
GATE DRIVER
UGATE Pull-Up Resistance (Note 7)
UGATE Source Current (Note 7) I
UGATE Sink Resistance (Note 7) R
UGATE Sink Current (Note 7) I
LGATE Pull-Up Resistance (Note 7)
LGATE Source Current (Note 7) I
LGATE Sink Resistance (Note 7) R
LGATE Sink Current (Note 7) I
UG ATE to LGAT E De adtim e t
LGATE to UGAT E De adtim e t
R
UGPU
UGSRC
UGPD
UGSNK
R
LGPU
LGSRC
LGPD
LGSNK
UGFLGR
LGFUGR
200mA Source Current 1.0 1.5 Ω
UGATE - PHASE = 2.5V 2.0 A 250mA Sink Current 1.0 1.5 Ω
UGATE - PHASE = 2.5V 2.0 A
250mA Source Current 1.0 1.5 Ω
LGATE - VSSP = 2.5V 2.0 A 250mA Sink Current 0.5 0.9 Ω
LGATE - VSSP = 2.5V 4.0 A
UGATE falling to LGATE rising, no load 23 ns
LGATE falling to UGATE rising, no load 28 ns
BOOTSTRAP DIODE
Forward Voltage V
Reverse Leakage I
F
R
PVCC = 5V, IF = 2mA 0.58 V
VR = 25V 0.2 µA
PROTECTION
Overvoltage Threshold OV
Severe Overvoltage Threshold OV
OC Threshold Offset at Rcomp = Open Circuit
H
HS
VSEN rising above setpoint for >1ms 150 195 240 mV
VSEN rising for >2µs 1.525 1.55 1.575 V
3-phase configuration, ISUM- pin
28.4 30.3 32.2 µA
current
2-phase configuration, ISUM- pin
18.3 20.2 22.1 µA
current
1-phase configuration, ISUM- pin
8.2 10.1 12.0 µA
current
Current Imbalance Threshold One ISEN above another ISEN for
9mV
>1.2ms
Undervoltage Threshold UV
f
VSEN falling below setpoint for >1.2ms
-355 -295 -235 mV
8
FN7557.1
March 18, 2010
ISL62883C
Electrical Specifications Operating Conditions: VDD = 5V, T
unless otherwise noted. Boldface limits apply over the operating temperature range,
= -40°C to +100°C, f
A
= 300kHz,
SW
-40°C to +100°C. (Continued)
PARAMETER SYMBOL TEST CONDITIONS
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
LOGIC THRESHOLDS
VR_ON Input Low V
VR_ON Input High V
V
VID0-VID6, PSI#, and DPRSLPVR Input Low
VID0-VID6, PSI#, and DPRSLPVR Input High
IL
IH
IH
V
IL
V
IH
ISL62883CHRTZ 0.7 V
ISL62883CIRTZ 0.75 V
0.7 V
0.3 V
0.3 V
PWM
PWM3 Output Low V
PWM3 Output High V
0L
0H
Sinking 5mA 1.0 V
Sourcing 5mA 3.5 V
PWM Tri-State Leakage PWM = 2.5V 2 µA
THERMAL MONITOR
NTC Source Current NTC = 1.3V 53 60 67 µA
Over-Temperature Threshold V (NTC) falling 1.18 1.2 1.22 V
VR_TT# Low Output Resistance R
TT
I = 20mA 6.5 9 Ω
CLK_EN# OUTPUT LEVELS
CLK_EN# Low Output Voltage V
CLK_EN# Leakage Current I
OL
OH
I = 4mA 0.26 0.4 V
CLK_EN# = 3.3V -1 1 µA
CURRENT MONITOR
IMON Output Current I
IMON
ISUM- pin current = 20µA 114 120 126 µA
ISUM- pin current = 10µA 54 60 66 µA
ISUM- pin current = 5µA 25.5 30 34.5 µA
IMON Clamp Voltage V
IMONCLAMP
1.1 1.15 V
Current Sinking Capability 275 µA
INPUTS
VR_ON Leakage Current I
VR_ON
VR_ON = 0V -1 A
VR_ON = 1V 0 1 µA
VIDx Leakage Current I
VIDx
VIDx = 0V -1 A
VIDx = 1V 0.45 1 µA
PSI# Leakage Current I
PSI#
PSI# = 0V -1 A
PSI# = 1V 0.45 1 µA
DPRSLPVR Leakage Current I
DPRSLPVR
DPRSLPVR = 0V -1 A
DPRSLPVR = 1V 0.45 1 µA
SLEW RATE
Slew Rate (For VID Change) SR 56.5mV/µs
NOTES:
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.
7. Limits established by characterization and are not production tested.
9
FN7557.1
March 18, 2010
Gate Driver Timing Diagram
PWM
t
LGFUGR
UGATE
t
RU
ISL62883C
t
FU
1V
LGATE
t
FL
1V
Simplified Application Circuits
V+5 Vin
V+5
VINVDD
VCCP
ISL62883C
(Bottom Pad)
VSS
PWM3
ISEN3
BOOT2
UGATE2
PHASE2
LGATE2
VSSP2
ISEN2
BOOT1
UGATE1
PHASE1
LGATE1
VSSP1
ISEN1
ISUM+
ISUM-
PGOOD
CLK_EN#
VID<0:6>
PSI#
DPRSLPVR
VR_ON
Rdroop
VCCSENSE VSSSENSE
IMON
Rbias
Rntc
o
C
Rimon
Rfset
RBIAS
NTC
PGOOD VR_TT#VR_TT# CLK_EN#
VIDs PSI# DPRSLPVR VR_ON VW
COMP
FB
VSEN
RTN
IMON
t
UGFLGR
V+5
VCC
FCCM
ISL6208
PWM
GND
Cs3
Cs2
Cs1
Cn
Ri
UGATE
PHASE
BOOT
LGATE
o
Rs3
Rs2
Rs1
C
Rn
t
RL
Vin
L3
L2
L1
Rsum3
Rsum2
Rsum1
V
o
FIGURE 1. TYPICAL 3-PHASE APPLICATION CIRCUIT USING DCR SENSING
10
FN7557.1
March 18, 2010
ISL62883C
Simplified Application Circuits (Continued)
PGOOD
CLK_EN#
VID<0:6>
PSI#
DPRSLPVR
VR_ON
Rdroop
VCCSENSE VSSSENSE
IMON
Rbias
Rntc
o
C
Rimon
Rfset
V+5 Vin
RBIAS
NTC
PGOOD VR_TT#VR_TT# CLK_EN#
VIDs PSI# DPRSLPVR VR_ON VW
ISL62883C
COMP
FB
VSEN
RTN
IMON
(Bottom Pad)
V+5
VCCP
VSS
VINVDD
PWM3
ISEN3
BOOT2
UGATE2
PHASE2
LGATE2
VSSP2
ISEN2
BOOT1
UGATE1
PHASE1
LGATE1
VSSP1
ISEN1
ISUM+
ISUM-
FCCM
ISL6208
PWM
Cs3
Cs2
Cs2
Cn
Ri
V+5
VCC
LGATE
GND
UGATE
PHASE
BOOT
Rs3
Rs2
Rs1
Rsum3
Rsum2
Rsum1
Vin
L3
L2
L1
Rsen3
Rsen2
Rsen1
V
o
FIGURE 2. TYPICAL 3-PHASE APPLICATION CIRCUIT USING RESISTOR SENSING
V+5 Vin
V+5
VCCP
VSS
VINVDD
PWM3
BOOT2
UGATE2
PHASE2
LGATE2
VSSP2
ISEN2
BOOT1
UGATE1 PHASE1
LGATE1a
VSSP1
ISEN1
ISUM+
ISUM-
Cn
Ri
Cs2
Cs1
Vin
L2
V
o
Rs2
L1
Rs1
Rsum2
Rn
o
C
Rsum1
PGOOD
CLK_EN#
VID<0:6>
PSI#
DPRSLPVR
VR_ON
Rdroop
VCCSENSE
VSSSENSE
IMON
Rbias
Rntc
o
C
Rimon
Rfset
RBIAS
NTC
PGOOD VR_TT#VR_TT# CLK_EN#
VIDs PSI# DPRSLPVR VR_ON VW
ISL62883C
COMP
FB2 FB
VSEN
RTN
IMON
(Bottom Pad)
FIGURE 3. TYPICAL 2-PGHASE APPLICATION CIRCUIT USING DCR SENSING
11
FN7557.1
March 18, 2010
ISL62883C
Simplified Application Circuits (Continued)
V+5 Vin
V+5
VCCP
VSS
VINVDD
PWM3
BOOT2
UGATE2
PHASE2
LGATE2
VSSP2
ISEN2
BOOT1
UGATE1 PHASE1
LGATE1a
VSSP1
ISEN1
ISUM+
ISUM-
Cn
Ri
PGOOD
CLK_EN#
VID<0:6>
PSI#
DPRSLPVR
VR_ON
Rdroop
VCCSENSE
VSSSENSE
IMON
Rbias
Rntc
o
C
Rimon
Rfset
RBIAS
NTC
PGOOD VR_TT#VR_TT# CLK_EN#
VIDs PSI# DPRSLPVR VR_ON VW
ISL62883C
COMP
FB2 FB
VSEN
RTN
IMON
(Bottom Pad)
Vin
L
Rsum
Rn
o
C
V
o
FIGURE 4. TYPICAL 1-PHASE APPLICATION CIRCUIT USING DCR SENSING
12
FN7557.1
March 18, 2010
ISL62883C
Theory of Operation
Multiphase R3™ Modulator
MASTER CLOCK CIRCUIT
VW
MASTER
CLOCK
gmVo
VW
Vcrs1
Crs1
VW
Vcrs2
Crs2
VW
Vcrs3
Crs3
FIGURE 5. R
VW
Vcrm
COMP
Master
Clock
Clock1
PWM1
Clock2
PWM2
Clock3
PWM3
FIGURE 6. R
COMP
Vcrm
Crm
Vcrs2 Vcrs1
3
MODULATOR OPERATION
PRINCIPLES IN STEADY STATE
MASTER
CLOCK
Phase
Sequencer
SLAVE CIRCUIT 1
Clock1
S
R
gm
SLAVE CIRCUIT 2
Clock2
Clock3
S
R
gm
SLAVE CIRCUIT 3
S
R
gm
3
MODULATOR CIRCUIT
Q
Q
Q
PWM1
PWM2
PWM3
Phase1
Phase2
Phase3
VW
Vcrs3
Clock1 Clock2 Clock3
L1
I
L1
L2
I
L2
L3
I
L3
Hysteretic
Window
Vo
Co
VW
COMP
Vcrm
Master
Clock
Clock1
PWM1
Clock2
PWM2
Clock3
PWM3
VW
Vcrs1
Vcrs3
Vcrs2
FIGURE 7. R
3
MODULATOROPERATION
PRINCIPLES IN LOAD INSERTION RESPONSE
The ISL62883C is a multiphase regulators implementing Intel™ IMVP-6.5™ protocol. It can be programmed for 1-, 2- or 3-phase operation. It uses Intersil patented
3
R
™ (Robust Ripple Regulator™) modulator. The R3™ modulator combines the best features of fixed frequency PWM and hysteretic PWM while eliminating many of their shortcomings. Figure 5 conceptually shows the ISL62883C multiphase R
3
™ modulator
circuit, and Figure 6 shows the operation principles.
A current source flows from the VW pin to the COMP pin, creating a voltage window set by the resistor between the two pins. This voltage window is called VW window in the following discussion.
Inside the IC, the modulator uses the master clock circuit to generate the clocks for the slave circuits. The modulator discharges the ripple capacitor C current source equal to g factor. C
voltage V
rm
crm
, where gm is a gain
mVo
is a sawtooth waveform
with a
rm
traversing between the VW and COMP voltages. It resets to VW when it hits COMP, and generates a one-shot master clock signal. A phase sequencer distributes the master clock signal to the slave circuits. If the ISL62883C is in 3-phase mode, the master clock signal will be distributed to the three phases, and the Clock1~3 signals will be 120° out-of-phase. If the ISL62883C is in 2-phase mode, the master clock signal will be distributed to Phases 1 and 2, and the Clock1 and Clock2 signals will be 180° out-of-phase. If the
13
FN7557.1
March 18, 2010
ISL62883C
ISL62883C is in 1-phase mode, the master clock signal will be distributed to Phases 1 only and be the Clock1 signal.
Each slave circuit has its own ripple capacitor C whose voltage mimics the inductor ripple current. A g
,
rs
m
amplifier converts the inductor voltage into a current source to charge and discharge C
. The slave circuit
rs
turns on its PWM pulse upon receiving the clock signal, and the current source charges C V
hits VW, the slave circuit turns off the PWM pulse,
Crs
and the current source discharges C
Since the ISL62883C works with V
. When Crs voltage
rs
.
rs
, which are
crs
large-amplitude and noise-free synthesized signals, the ISL62883C achieves lower phase jitter than conventional hysteretic mode and fixed PWM mode controllers. Unlike conventional hysteretic mode converters, the ISL62883C has an error amplifier that allows the controller to maintain a 0.5% output voltage accuracy.
Figure 7 shows the operation principles during load insertion response. The COMP voltage rises during load insertion, generating the master clock signal more quickly, so the PWM pulses turn on earlier, increasing the effective switching frequency, which allows for higher control loop bandwidth than conventional fixed frequency PWM controllers. The VW voltage rises as the COMP voltage rises, making the PWM pulses wider. During load release response, the COMP voltage falls. It takes the master clock circuit longer to generate the next master clock signal so the PWM pulse is held off until needed. The VW voltage falls as the VW voltage falls, reducing the current PWM pulse width. This kind of behavior gives the ISL62883C excellent response speed.
The fact that all the phases share the same VW window voltage also ensures excellent dynamic current balance among phases.
ISL62883C can operate in diode emulation (DE) mode to improve light load efficiency. In DE mode, the low­side MOSFET conducts when the current is flowing from source to drain and doesn’t not allow reverse current, emulating a diode. As Figure 8 shows, when LGATE is on, the low-side MOSFET carries current, creating negative voltage on the phase node due to the voltage drop across the ON-resistance. The ISL62883C monitors the current through monitoring the phase node voltage. It turns off LGATE when the phase node voltage reaches zero to prevent the inductor current from reversing the direction and creating unnecessary power loss.
If the load current is light enough, as Figure 8 shows, the inductor current will reach and stay at zero before the next phase node pulse, and the regulator is in discontinuous conduction mode (DCM). If the load current is heavy enough, the inductor current will never reach 0A, and the regulator is in CCM although the controller is in DE mode.
Figure 9 shows the operation principle in diode emulation mode at light load. The load gets incrementally lighter in the three cases from top to bottom. The PWM on-time is determined by the VW window size, therefore is the same, making the inductor current triangle the same in the three cases. The ISL62883C clamps the ripple capacitor voltage V DE mode to make it mimic the inductor current. It takes the COMP voltage longer to hit V
, naturally stretching
crs
the switching period. The inductor current triangles move further apart from each other such that the inductor current average value is equal to the load current. The reduced switching frequency helps increase light load efficiency.
CCM/DCM BOUNDARY VW
Vcrs
crs
in
Diode Emulation and Period Stretching
Phase
UGATE
LGATE
IL
FIGURE 8. DIODE EMULATION
14
iL
LIGHT DCM
Vcrs
iL
Vcrs
iL
FIGURE 9. PERIOD STRETCHING
VW
VW
DEEP DCM
FN7557.1
March 18, 2010
Loading...
+ 30 hidden pages