IRFP450
Data Sheet July 1999
14A, 500V, 0.400 Ohm, N-Channel
Power MOSFET
This N-Channel enhancementmode silicon gate power field
effect transistor is an advanced power MOSFET designed,
tested, and guaranteed to withstand a specified level of
energy in the breakdownavalanchemodeof operation. All of
these power MOSFETs are designed for applications such
as switching regulators, switching convertors, motor drivers,
relay drivers, and drivers for high power bipolar switching
transistors requiring high speed and low gate drive power.
These types can be operated directly from integrated
circuits.
Formerly developmental type TA17435.
Ordering Information
PART NUMBER PACKAGE BRAND
IRFP450 TO-247 IRFP450
NOTE: When ordering, use the entire part number.
File Number
Features
• 14A, 500V
•r
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
= 0.400Ω
DS(ON)
Components to PC Boards”
Symbol
D
G
2331.3
Packaging
DRAIN
(TAB)
S
JEDEC STYLE TO-247
SOURCE
DRAIN
GATE
4-353
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
IRFP450
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
IRFP450 UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC = 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DS
D
D
DM
GS
D
500 V
500 V
14
8.8
56 A
±20 V
180 W
A
A
Linear Derating Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.44 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ,T
AS
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
860 mJ
-55 to 150
300
260
o
C
o
C
o
C
NOTE:
1. TJ = 25oC to 125oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV
Gate Threshold Voltage V
GS(TH)VGS
Zero Gate Voltage Drain Current I
On-State Drain Current (Note 2) I
D(ON)VDS
Gate to Source Leakage Current I
On Resistance (Note 2) r
DS(ON)ID
Forward Transconductance (Note 2) g
Turn-On Delay Time t
d(ON)
Rise Time t
Turn-Off Delay Time t
d(OFF)
Fall Time t
Total Gate Charge
Q
g(TOT)VGS
(Gate to Source + Gate to Drain)
Gate to Source Charge Q
Gate to Drain “Miller” Charge Q
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Internal Drain Inductance L
Internal Source Inductance L
Thermal Resistance, Junction to Case R
Thermal Resistance, Junction to Ambient R
DSSID
DSS
GSS
fs
r
f
gs
gd
ISS
OSS
RSS
D
S
θJC
θJA
= 250µA, VGS = 0V (Figure 10) 500 - - V
= VDS, ID = 250µA 2.0 - 4.0 V
VDS = Rated BV
VDS = 0.8 x Rated BV
> I
D(ON)
, VGS = 0V - - 25 µA
DSS
, VGS = 0V, TJ = 125oC - - 250 µA
DSS
x r
DS(ON)MAX
, VGS = 10V 14 - - A
VGS = ±20V - - ±100 nA
= 7.9A, VGS = 10V (Figures 8, 9) - 0.3 0.4 Ω
VDS≥ 50V, ID = 7.9A (Figure 12) 9.3 13.8 - S
VDD= 250V, ID≈ 14A, VGS = 10V, RGS = 6.1Ω,
RL = 17.4Ω MOSFET Switching Times are
Essentially Independent of Operating Temperature
-1627ns
-4566ns
- 68 100 ns
-4160ns
= 10V, ID≈ 14A, VDS = 0.8 x Rated BV
I
= 1.5mA (Figure 14) Gate Charge is
G(REF)
DSS
Essentially Independent of OperatingTemperature
- 82 130 nC
-12-nC
-42-nC
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) - 2000 - pF
- 400 - pF
- 100 - pF
Measured fromtheContact
Screw on Header Closer to
Source and Gate Pins to
Center of Die
Measured from the Source
Lead, 6.0mm (0.25in) from
Header to Source Bonding
Pad
Modified MOSFET
Symbol Showing the
Internal Device
Inductances
D
L
D
G
L
S
S
- 5.0 - nH
- 12.5 - nH
- - 0.70oC/W
Free Air Operation - - 30
o
C/W
4-354
IRFP450
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I
Pulse Source to Drain Current (Note 3) I
SD
SDM
Source to Drain Diode Voltage (Note 2) V
Reverse Recovery Time t
Reverse Recovery Charge Q
NOTES:
2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD= 50V, starting TJ= 25oC, L = 7.9mH, RG= 25Ω, peak IAS= 14A.
Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction
D
- - 14 A
- - 56 A
Rectifier
G
S
TJ = 25oC, ISD = 14A, VGS = 0V (Figure 13) - - 1.4 V
SD
TJ = 150oC, ISD = 13A, dISD/dt = 100A/µs - 1300 - ns
rr
TJ = 150oC, ISD = 13A, dISD/dt = 100A/µs - 7.4 - µC
RR
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 50 100 150
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
1
0.5
0.2
0.1
0.1
0.05
0.02
0.01
-2
10
, THERMAL IMPEDANCE
θJC
SINGLE PULSE
Z
-3
10
-5
10
-4
10
10
15
12
9
6
, DRAIN CURRENT (A)
D
I
3
0
25 75 125
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
-3
t1, RECTANGULAR PULSE DURATION (s)
-2
10
50 100
TC, CASE TEMPERATURE (oC)
CASE TEMPERATURE
P
DM
t
1
t
NOTES:
DUTY FACTOR: D = t
PEAK TJ = PDM x Z
0.1 1 10
2
1/t2
θJC
+ T
150
C
4-355
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE