TM
IRFP150N
Data Sheet March 2000
44A, 100V, 0.030 Ohm, N-Channel Power MOSFET
Packaging
JEDEC TO-247
SOURCE
DRAIN
GATE
DRAIN
(TAB)
Symbol
D
G
File Number 4844
Features
• Ultra Low On-Resistance
-r
= 0.030Ω, V GS= 10V
DS(ON)
• Simulation Models
- Temperature Compensated PSPICE™ and SABER
Electrical Models
- Spice and SABER
©
Thermal Impedance Models
- www.intersil.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Ordering Information
PART NUMBER PACKAGE BRAND
IRFP150N TO-247 IRFP150N
©
S
Absolute Maximum Ratings T
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain Current
Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Continuous (TC= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
NOTES:
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
= 25oC, Unless Otherwise Specified
C
DSS
DGR
GS
DM
STG
pkg
IRFP150N
UNITS
100 V
100 V
± 20 V
D
D
D
L
44
31
Figure 4
155
1.03
-55 to 175
300
260
A
A
W
W/oC
o
C
o
C
o
C
1
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc.
IRFP150N
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V
Drain to Source On Resistance r
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R
Thermal Resistance Junction to
Ambient
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time t
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q
Gate Charge at 10V Q
Threshold Gate Charge Q
Gate to Source Gate Charge Q
Gate to Drain "Miller" Charge Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
DSSID
DSS
VDS = 95V, VGS = 0V - - 1 µ A
VDS = 90V, VGS = 0V, TC = 150oC - - 250 µ A
GSS
GS(TH)VGS
DS(ON)ID
θ JC
R
θ JA
ON
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(10)
g(TH)
ISS
OSS
RSS
VGS = ± 20V - - ± 100 nA
TO-247 - - 0.97oC/W
VDD = 50V, ID = 44A
VGS= 10V,
RGS = 6.2Ω
(Figures 18, 19)
r
f
VGS = 0V to 10V - 48 58 nC
VGS = 0V to 2V - 3.1 3.8 nC
gs
gd
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
= 250µ A, VGS = 0V (Figure 11) 100 - - V
= VDS, ID = 250µ A (Figure 10) 2 - 4 V
= 44A, VGS = 10V (Figure 9) - 0.0255 0.030 Ω
--3 0oC/W
- - 130 ns
-1 1-n s
-7 5-n s
-3 7-n s
-6 1-n s
- - 150 ns
= 0V to 20V VDD = 50V,
- 90 108 nC
ID = 44A,
I
= 1.0mA
g(REF)
(Figures 13, 16, 17)
- 6.5 - nC
-1 7-n C
- 1700 - pF
- 460 - pF
- 145 - pF
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
Reverse Recovery Time t
Reverse Recovered Charge Q
2
SD
RR
ISD = 44A - - 1.25 V
ISD = 22A - - 1.00 V
rr
ISD = 44A, dISD/dt = 100A/µ s - - 105 ns
ISD = 44A, dISD/dt = 100A/µ s - - 305 nC
Typical Performance Curves
IRFP150N
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs
CASE TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θ JC
Z
THERMAL IMPEDANCE
SINGLE PULSE
0.01
-5
10
-4
10
50
40
30
20
, DRAIN CURRENT (A)
D
I
20
150
0
25
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
-3
10
t, RECTANGULAR PULSE DURATION (s)
-2
10
VGS= 10V
50 75 100 125 150
TC, CASE TEMPERATURE (oC)
CASE TEMPERATURE
P
DM
t
1
t
NOTES:
DUTY FACTOR: D = t1/t
PEAK TJ = PDM x Z
-1
10
θ JC
10
0
2
x R
θ JC
+ T
175
2
C
1
10
600
VGS = 10V
100
, PEAK CURRENT (A)
DM
I
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
30
-5
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
3
TC = 25oC
FOR TEMPERATURES
ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
0
10
C
150
1
10
Typical Performance Curves (Continued)
IRFP150N
300
100
10
OPERATION IN THIS
D
AREA MAY BE
LIMITED BY r
1
1
V
DS
, DRAIN CURRENT (A)
I
DS(ON)
10
, DRAIN TO SOURCE VOLTAGE (V)
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
100µ s
1ms
10ms
100
300
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
80
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
= 15V
V
DD
60
40
TJ = 175oC
DRAIN CURRENT (A)
D,
20
I
0
234 6
VGS, GATE TO SOURCE VOLTAGE (V)
TJ = -55oC
TJ = 25oC
5
300
100
, AVALANCHE CURRENT (A)
AS
I
10
10
0.001 0.01 0.1 1
If R = 0
tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
STARTING TJ = 150oC
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPEDINDUCTIVE SWITCHING
CAPABILITY
80
60
40
, DRAIN CURRENT (A)
D
20
I
0
01 2 3 4
VGS = 20V
= 10V
V
GS
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
T
= 25oC
C
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 7V
V
GS
VGS =5V
= 6V
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
3.0
PULSE DURATION =
DUTY CYCLE = 0.5% MAX
2.5
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120
TJ, JUNCTION TEMPERATURE (oC)
80µ s
VGS = 10V, ID = 44A
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
160
200
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
-80 -40 0 40 80 120 200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
4
VGS = VDS, ID = 250µ A
160
Typical Performance Curves (Continued)
IRFP150N
1.2
ID = 250µ A
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 200
T
, JUNCTION TEMPERATURE (oC)
J
160 160
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VDD = 50V
8
6
6000
1000
C
≅ CDS+ C
OSS
C, CAPACITANCE (pF)
100
30
0.1 1.0 10 100
VDS, DRAIN TO SOURCE VOLTAGE (V)
GD
VGS= 0V, f = 1MHz
C
= CGS + C
ISS
C
= C
RSS
GD
GD
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
, GATE TO SOURCE VOLTAGE (V)
GS
V
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
t
0V
P
AS
R
G
4
WAVEFORMS IN
2
0
0
V
DS
I
AS
10 20 30 40 50
Q
, GATE CHARGE (nC)
g
L
+
V
DD
-
DUT
0.01Ω
DESCENDING ORDER:
ID = 44A
= 22A
I
D
0
BV
DSS
t
P
I
AS
t
AV
V
DS
V
DD
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
5
Test Circuits and Waveforms (Continued)
V
DS
R
L
V
GS
DUT
I
g(REF)
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS
+
V
-
IRFP150N
DD
V
DD
VGS= 2V
0
I
g(REF)
0
Q
g(TOT)
V
DS
VGS= 20V
Q
g(10)
V
GS
Q
g(TH)
Q
gs
Q
gd
VGS = 10V
V
DS
R
L
V
GS
+
V
DD
-
V
DS
0
t
d(ON)
90%
t
ON
t
r
10%
DUT
R
GS
V
GS
V
GS
10%
0
50%
PULSE WIDTH
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. SWITCHING TIME WAVEFORM
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
6
PSPICE Electrical Model
.SUBCKT IRFP150N 2 1 3 ; rev 15 Jan 2000
CA 12 8 2.70e-9
CB 15 14 2.70e-9
CIN 6 8 1.56e-9
IRFP150N
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 113.5
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1.0e-9
LGATE 1 9 6.5e-9
LSOURCE 3 7 2.3e-9
GATE
1
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.68e-2
RGATE 9 20 0.86
RLDRAIN 2 5 10
RLGATE 1 9 26
RLSOURCE 3 7 11
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 1.65e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18
22
20
S1A
12
13
8
S1B
EGS EDS
6
8
13
10
RSLC2
6
14
13
+
+
6
8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CB
CIN
-
+
-
5
51
5
51
21
MSTRO
14
5
8
RSLC1
+
ESLC
-
50
RDRAIN
16
8
MMED
DBREAK
11
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17
18
-
7
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
SOURCE
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*98),3.5))}
.MODEL DBODYMOD D (IS = 1.30e-12 IKF = 19 RS = 2.86e-3 XTI = 5 TRS1 = 2.25e-3 TRS2 = 1.00e-6 CJO = 1.90e-9 TT = 6.5e-8 M = 0.55)
.MODEL DBREAKMOD D (RS = 3.05e-1 IKF = 1 TRS1 = 8e-4 TRS2 = 3e-6)
.MODEL DPLCAPMOD D (CJO = 2.20e-9 IS = 1e-30 M = 0.83)
.MODEL MMEDMOD NMOS (VTO = 3.21 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.86)
.MODEL MSTROMOD NMOS (VTO = 3.58 KP = 37.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.81 KP = 0.07 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.60 )
.MODEL RBREAKMOD RES (TC1 =1.08e-3 TC2 = -8.6e-7)
.MODEL RDRAINMOD RES (TC1 = 7.70e-3 TC2 = 2.20e-5)
.MODEL RSLCMOD RES (TC1 = 4.25e-3 TC2 = 1.00e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -2.07e-3 TC2 = -6.65e-6)
.MODEL RVTEMPMOD RES (TC1 = -3.20e-3 TC2 =9.67e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.2 VOFF= -2.4)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.4 VOFF= -6.2)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.8 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.8)
.ENDS
2
3
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
IRFP150N
SABER Electrical Model
REV 15 Jan 2000
template IRFP150N n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 1.30e-12, cjo = 1.90e-9, tt = 6.5e-8, xti = 5, m = 0.55)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 2.20e-9, is = 1e-30, vj=1.0, m = 0.83)
m..model mmedmod = (type=_n, vto = 3.21, kp = 5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.58, kp = 37.5, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.81, kp = 0.07, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -2.4)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.4, voff = -6.2)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.8, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.8)
c.ca n12 n8 = 2.70e-9
c.cb n15 n14 = 2.70e-9
c.cin n6 n8 = 1.56e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 6.5e-9
l.lsource n3 n7 = 2.3e-9
GATE
LGATE
1
RLGATE
RGATE
9
EVTEMP
+
20
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.08e-3, tc2 = -8.6e-7
res.rdbody n71 n5 = 2.86e-3, tc1 = 2.25e-3, tc2 = 1e-6
S1A
12
res.rdbreak n72 n5 = 3.05e-1, tc1 = 8e-4, tc2 = 3e-6
res.rdrain n50 n16 = 1.68e-2, tc1 = 7.70e-3, tc2 = 2.20e-5
res.rgate n9 n20 = 0.86
res.rldrain n2 n5 = 10
S1B
CA
res.rlgate n1 n9 = 26
res.rlsource n3 n7 = 11
res.rslc1 n5 n51 = 1e-6, tc1 = 4.25e-3, tc2 = 1.00e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.65e-3, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -3.20e-3, tc2 = 9.67e-7
res.rvthres n22 n8 = 1, tc1 = -2.07e-3, tc2 = -6.65e-6
spe.ebreak n11 n7 n17 n18 = 113.5
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/98))** 3.5))
}
}
10
-
6
ESG
8
+
-
18
22
13
14
8
13
13
+
+
EGS EDS
-
-
DPLCAP
RSLC2
EVTHRES
+
6
S2A
S2B
6
8
71
7
RLSOURCE
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
RDBODY
DBODY
LSOURCE
VBAT
5
RSLC1
51
ISCL
50
RDRAIN
21
-
19
8
MSTRO
CIN
15
CB
14
+
5
8
-
16
8
RDBREAK
MMED
8
72
DBREAK
11
MWEAK
EBREAK
+
17
18
-
RSOURCE
RBREAK
17 18
IT
RVTHRES
DRAIN
2
SOURCE
3
8
SPICE Thermal Model
REV 15 Jan 2000
IRFP150NT
CTHERM1 th 6 3.10e-3
CTHERM2 6 5 1.60e-2
CTHERM3 5 4 1.34e-2
CTHERM4 4 3 1.22e-2
CTHERM5 3 2 1.40e-2
CTHERM6 2 tl 1.05e-1
RTHERM1 th 6 1.20e-2
RTHERM2 6 5 3.50e-2
RTHERM3 5 4 5.20e-2
RTHERM4 4 3 1.45e-1
RTHERM5 3 2 2.62e-1
RTHERM6 2 tl 2.64e-1
IRFP150N
RTHERM1
RTHERM2
JUNCTION
th
CTHERM1
6
CTHERM2
5
SABER Thermal Model
SABER thermal model IRFP150NT
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 3.10e-3
ctherm.ctherm2 6 5 = 1.60e-2
ctherm.ctherm3 5 4 = 1.34e-2
ctherm.ctherm4 4 3 = 1.22e-2
ctherm.ctherm5 3 2 = 1.40e-2
ctherm.ctherm6 2 tl = 1.05e-1
rtherm.rtherm1 th 6 = 1.20e-2
rtherm.rtherm2 6 5 = 3.50e-2
rtherm.rtherm3 5 4 = 5.20e-2
rtherm.rtherm4 4 3 = 1.45e-1
rtherm.rtherm5 3 2 = 2.62e-1
rtherm.rtherm6 2 tl = 2.64e-1
}
RTHERM3
RTHERM4
RTHERM5
RTHERM6
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
CASE
tl
9
TO-247
3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE
IRFP150N
E
Q
ØR
D
A
ØS
TERM. 4
ØP
SYMBOL
A 0.180 0.190 4.58 4.82 -
b 0.046 0.051 1.17 1.29 2, 3
b
1
b
2
INCHES MILLIMETERS
NOTES MIN MAX MIN MAX
0.060 0.070 1.53 1.77 1, 2
0.095 0.105 2.42 2.66 1, 2
c 0.020 0.026 0.51 0.66 1, 2, 3
D 0.800 0.820 20.32 20.82 -
L
1
L
b
1
b
2
c
b
2
1
e
3
e
1
J
1
3
BACK VIEW
2
1
E 0.605 0.625 15.37 15.87 -
e 0.219 TYP 5.56 TYP 4
e
1
J
1
0.438 BSC 11.12 BSC 4
0.090 0.105 2.29 2.66 5
L 0.620 0.640 15.75 16.25 -
L
1
0.145 0.155 3.69 3.93 1
ØP 0.138 0.144 3.51 3.65 -
Q 0.210 0.220 5.34 5.58 ØR 0.195 0.205 4.96 5.20 ØS 0.260 0.270 6.61 6.85 -
NOTES:
1. Lead dimension and finish uncontrolled in L1.
2. Lead dimension (without solder).
3. Add typically 0.002 inches (0.05mm) for solder coating.
4. Positionoflead to bemeasured0.250inches (6.35mm) from bottom
of dimension D.
5. Positionoflead to bemeasured0.100inches (2.54mm) from bottom
of dimension D.
6. Controlling dimension: Inch.
7. Revision 1 dated 1-93.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringementsof patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
10
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029