Intersil IRF820 Datasheet

IRF820
Data Sheet July 1999
2.5A, 500V, 3.000 Ohm, N-Channel Power MOSFET
This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy inthe breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.
Formerly developmental type TA17405.
Ordering Information
PART NUMBER PACKAGE BRAND
IRF820 TO-220AB IRF820
NOTE: When ordering, use the entire part number.
File Number
Features
• 2.5A, 500V
•r
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
= 3.000
DS(ON)
Components to PC Boards”
Symbol
D
G
1581.4
Packaging
S
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
4-245
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
IRF820
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
IRF820 UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DS
D D
DM
GS
D
500 V 500 V
2.5
1.6
8.0 A
±20 V
50 W
A A
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ,T
AS
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
210 mJ
-55 to 150
300 260
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 125oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V
GS(TH)VDS
Zero Gate Voltage Drain Current I
On-State Drain Current (Note 2) I
D(ON)VDS
Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)ID
Forward Transconductance (Note 2) g Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Total Gate Charge
Q
g(TOT)VGS
(Gate to Source + Gate to Drain) Gate to Source Charge Q Gate to Drain “Miller” Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Internal Drain Inductance L
Internal Source Inductance L
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
DSSID
DSS
GSS
fs
r
f
gs gd
ISS OSS RSS
D
S
θJC
θJA
= 250µA, VGS = 0V (Figure 10) 500 - - V
= VGS, ID = 250µA 2.0 - 4.0 V VDS = Rated BV VDS = 0.8 x Rated BV
> I
D(ON)
, VGS = 0V - - 25 µA
DSS
, VGS = 0V, TJ = 125oC - - 250 µA
DSS
x r
DS(ON)MAX
, VGS = 10V (Figure 7) 2.5 - - A
VGS = ±20V - - ±100 nA
= 1.4A, VGS = 10V (Figures 8, 9) - 2.5 3.0 VDS≥ 10V, ID = 2.0A (Figure 12) 1.5 2.3 - S VDD = 250V, ID≈ 2.5A, RGS = 18, RL = 96
MOSFET Switching Times are Essentially Independent of Operating Temperature
-1115ns
-1118ns
-2942ns
-1218ns
= 10V, ID = 2.5A, VDS = 0.8 x Rated BV
I
= 1.5mA
g(REF)
DSS
(Figure 14) Gate Charge is Essentially Independent of Operating Temperature
-1219nC
- 2.5 - nC
- 6.0 - nC
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) - 360 - pF
-60-pF
-10-pF
Measured From the Contact Screw on Tab to Center of Die
Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die
MeasuredFrom the Source Lead, 6mm (0.25in) from Header to Source Bonding Pad
Modified MOSFET Symbol Showing the Internal Device Inductances
D
L
D
G
L
S
S
- 3.5 - nH
- 4.5 - nH
- 7.5 - nH
- - 2.5oC/W
Free Air Operation - - 80
o
C/W
4-246
IRF820
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I Pulse Source to Drain Current
SD
I
SDM
(Note 3)
Source to Drain Diode Voltage (Note 2) V Reverse Recovery Time t Reverse Recovery Charge Q
NOTES:
2. Pulse test: pulse width 300µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD= 50V, starting TJ= 25oC, L = 60mH, RG= 25Ω, peak IAS = 2.5A.
Modified MOSFET Symbol
Showing the Integral
Reverse P-N Junction
D
- - 2.5 A
- - 8.0 A
Rectifier
G
S
TJ = 25oC, ISD = 2.5A, VGS = 0V (Figure 13) - - 1.6 V
SD
TJ = 25oC, ISD = 2.5A, dISD/dt = 100A/µs 130 300 540 ns
rr
TJ = 25oC, ISD = 2.5A, dISD/dt = 100A/µs 0.57 1.4 2.3 µC
RR
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 50 100 150
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
10
C/W)
o
0.5
1
0.2
0.1
, TRANSIENT Z
θJC
THERMAL IMPEDANCE (
0.1
-2
10
10
0.05
0.02
0.01
SINGLE PULSE
-5
-4
10
10
2.5
2.0
1.5
1.0
, DRAIN CURRENT (A)
D
I
0.5
0
25 75 125
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
-3
t1, RECTANGULAR PULSE DURATION (s)
-2
10
50 100
TC, CASE TEMPERATURE (oC)
CASE TEMPERATURE
P
DM
t
1
t
NOTES: DUTY FACTOR: D = t1/t
PEAK TJ = PDM x Z
0.1 1 10
2
θJC
2
+ T
150
C
4-247
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
IRF820
Typical Performance Curves
100
10
1
, DRAIN CURRENT (A)
D
I
0.1
OPERATION IN THIS AREA IS LIMITED BY r
T
C
T
J
SINGLE PULSE
VDS, DRAIN TO SOURCE VOLTAGE (V)
DS(ON)
= 25oC
= MAX RATED
101
Unless Otherwise Specified (Continued)
10µs
100µs
1ms
10ms
2
10
DC
3
10
, DRAIN CURRENT (A)
D
I
5
VGS = 10V
4
3
2
1
0
0 50 100 150 200
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 6.0V
VGS = 5.5V
VGS = 5.0V
VGS = 4.5V
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS
5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
4
3
2
, DRAIN CURRENT (A)
D
I
1
0
0
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 10V
VGS = 6.0V
VGS = 5.5V
VGS = 5.0V
VGS = 4.0V
812 20
VGS = 4.5V
16
10
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
50V
V
DS
1
0.1
, DRAIN CURRENT (A)
D
I
-2
10
02468
TJ = 150oC
, GATE TO SOURCE VOLTAGE (V)
V
GS
TJ = 25oC
VGS = 4.0V
250
10
FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS
10
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
8
6
4
, DRAIN TO SOURCE
ON RESISTANCE ()
DS(ON)
2
r
0
0246810
, DRAIN CURRENT (A)
I
D
VGS = 10V
VGS = 20V
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
3.0
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 10V, ID = 2.5A
V
GS
2.4
1.8
1.2
ON RESISTANCE
0.6
NORMALIZED DRAIN TO SOURCE
0
-40 0 40 , JUNCTION TEMPERATURE (oC)
T
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4-248
80
120
160
IRF820
Typical Performance Curves
1.25 ID = 250µA
1.15
1.05
0.95
BREAKDOWNVOLTAGE
0.85
NORMALIZED DRAIN TO SOURCE
0.75
-40 0 40 , JUNCTION TEMPERATURE (oC)
T
J
Unless Otherwise Specified (Continued)
80
120
FIGURE 10. NORMALIZED DRAIN TOSOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
4.0
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
3.2 TJ = 25oC
2.4
TJ = 150oC
1.6
, TRANSCONDUCTANCE (S)
fs
0.8
g
0
0 0.8 1.6 2.4 3.2 4.0
, DRAIN CURRENT (A)
I
D
160
1000
VGS= 0V, f = 1MHz C
= CGS + C
ISS
C
= C
RSS
800
C
C
OSS
600
400
C, CAPACITANCE (nF)
200
0
110
GD
GD
+ C
DS
GD
C
ISS
C
OSS
C
RSS
VDS, DRAIN TO SOURCE VOLTAGE (V)
100
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
10
TJ = 150oC
1
, SOURCE TO DRAIN CURRENT (A)
SD
I
0.1 0 0.4 0.8 1.2 1.6
, SOURCE TO DRAIN VOLTAGE (V)
V
SD
TJ = 25oC
2.0
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE
20
ID = 2.5A
16
12
8
4
, GATE TO SOURCEVOLTAGE (V)
GS
V
0
048121620
IRF820, IRF822
= 400V
V
DS
VDS = 250V V
= 100V
DS
Q
, GATE CHARGE (nC)
g
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE
4-249
IRF820
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
t
P
I
AS
t
AV
V
DS
V
DD
R
G
V
GS
FIGURE 17. SWITCHING TIME TEST CIRCUIT
CURRENT
REGULATOR
12V
BATTERY
0
0.2µF
50k
I
g(REF)
0.3µF
G
IG CURRENT
SAMPLING
RESISTOR RESISTOR
R
L
DUT
D
S
I
D
SAMPLING
+
V
-
V
DS
(ISOLATED SUPPLY)
SAME TYPE AS DUT
DUT
V
CURRENT
DD
DS
t
ON
t
d(ON)
t
V
DS
0
V
GS
10%
0
r
90%
10%
50%
PULSE WIDTH
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
V
DD
Q
g(TOT)
Q
gd
Q
gs
V
DS
0
I
G(REF)
0
t
d(OFF)
90%
V
GS
t
OFF
50%
t
f
90%
10%
FIGURE 19. GATE CHARGE TEST CIRCUIT
4-250
FIGURE 20. GATE CHARGE WAVEFORMS
IRF820
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly , the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
4-251
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...