Intersil IRF610 Datasheet

IRF610
Data Sheet June 1999
3.3A, 200V, 1.500 Ohm, N-Channel Power MOSFET
This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy inthe breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.
Formerly developmental type TA17442.
Ordering Information
PART NUMBER PACKAGE BRAND
IRF610 TO-220AB IRF610
NOTE: When ordering, use the entire part number .
File Number
Features
• 3.3A, 200V
•r
• Single Pulse Avalanche Energy Rated
• SOA is Power Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
= 1.500
DS(ON)
Components to PC Boards”
Symbol
D
G
1576.3
Packaging
S
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
4-190
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
IRF610
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
IRF610 UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DGR
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DS
D D
DM
GS
D
200 V 200 V
3.3
2.1
A A
8A
±20 V
43 W
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.34 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ,T
AS
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
46 mJ
-55 to 150
300 260
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 125oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V Zero Gate Voltage Drain Current I
DSSVGS
GS(TH)VDS
DSS
= 0V, ID = 250µA (Figure 10) 200 - - V
= VGS, ID = 250µA 2-4V VDS = Max Rating, VGS = 0V - - 25 µA VDS = Max Rating x 0.8, VGS = 0V, TJ = 125oC - - 250 µA
On-State Drain Current (Note 2) I
D(ON)
Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)VGS
Forward Transconductance (Note 2) g Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Total Gate Charge
Q
g(TOT)VGS
(Gate to Source + Gate to Drain) Gate to Source Charge Q Gate to Drain “Miller” Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Internal Drain Inductance L
Internal Source Inductance L
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
GSS
OSS RSS
VDS > I
D(ON)
x r
DS(ON)MAX
, VGS = 10V (Figure 7) 3.3 - - A
VGS = ±20V - - ±100 nA
= 10V, ID = 1.6A (Figures 8, 9) - 1.0 1.5 VDS≥ 50V, ID = 1.6A (Figure 12) 0.8 1.3 - S
fs
VDD = 100V, ID≈ 3.3A, RG = 24, RL = 30 MOSFET Switching Times are
r
Essentially Independent of Operating Temperature
f
= 10V, ID = 3.3A, VDS = 0.8 x Rated BV I
= 1.5mA (Figure 14) Gate Charge is
g(REF)
Essentially Independent of Operating
gs
Temperature
gd
VGS = 0V, VDS = 25V, f = 1MHz
ISS
(Figure 11)
DSS
,
- 8 12 ns
-1726ns
-1321ns
- 9 13 ns
- 5.3 8.2 nC
- 1.2 - nC
- 3.0 - nC
- 135 - pF
-60-pF
-16-pF
Measured From the
D
Contact Screw on Tab to Center of Die
Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die
Measured From the Source
S
Lead, 6mm (0.25in) from Header to Source Bonding Pad
θJC
Free Air Operation - - 80
θJA
Modified MOSFET Symbol Showing the Internal Device Inductances
G
D
L
D
L
S
S
- 3.5 - nH
- 4.5 - nH
- 7.5 - nH
- - 2.9
o o
C/W C/W
4-191
IRF610
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I Pulse Source to Drain Current
I
SDM
(Note 3)
Source to Drain Diode Voltage (Note 2) V Reverse Recovery Time t Reverse Recovery Charge Q
NOTES:
2. Pulse test: pulse width 300µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. VDD= 50V, starting TJ= 25oC, L = 6.4mH, RG= 25Ω, peak IAS = 3.3A.
Modified MOSFET Symbol
SD
Showing the Integral Reverse P-N Junction
D
- - 3.3 A
--8 A
Rectifier
G
S
TJ = 25oC, ISD = 3.3A, VGS = 0V (Figure 13) - - 2.0 V
SD
TJ = 25oC, ISD = 3.3A, dISD/dt = 100A/µs 75 160 310 ns
rr
TJ = 25oC, ISD = 3.3A, dISD/dt = 100A/µs 0.33 0.9 1.4 µC
RR
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 50 100 150
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
10
C/W)
0.5
o
1
0.2
0.1
θJC
0.1
THERMAL IMPEDANCE (
0.01 10
0.05
0.02
0.01 SINGLE PULSE
-5
-4
10
, TRANSIENT Z
5.0
4.0
3.0
2.0
, DRAIN CURRENT (A)
D
I
1.0
0
25 50 75 100
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
-3
10
t1, RECTANGULAR PULSE DURATION (S)
-2
10
TC, CASE TEMPERATURE (oC)
CASE TEMPERATURE
P
DM
t
1
t
NOTES: DUTY FACTOR: D = t1/t
PEAK TJ = PDM x Z
0.1 1 10
2
θJC
125
2
+ T
150
C
4-192
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE
Loading...
+ 4 hidden pages