Intersil IRF340, IRF343, IRF341IRF342 Datasheet

1
File Number
2307.3
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
IRF340
10A, 400V, 0.550 Ohm, N-Channel Power MOSFET
This N-Channel enhancementmode silicon gate power field effect transistor is designed, tested and guaranteed to withstand a specific level of energy in the breakdown avalanche mode of operation. These MOSFETs are designed for applications such as switching regulators, switchingconverters,motordrivers,relaydrivers,anddrivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.
Formerly developmental type TA17424.
Features
• 10A, 400V
•r
DS(ON)
= 0.550
• Single Pulse Avalanche Energy Rated
• SOA is Power-Dissipation Limited
• Nanosecond Switching Speeds
• Linear Transfer Characteristics
• High Input Impedance
• Majority Carrier Device
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
Packaging
JEDEC TO-204AE
Ordering Information
PART NUMBER PACKAGE BRAND
IRF340 TO-204AE IRF340
NOTE: When ordering, use the entire part number.
D
G
S
DRAIN (FLANGE)
SOURCE (PIN 2)
GATE (PIN 1)
Data Sheet March 1999
2
Absolute Maximum Ratings T
C
= 25oC, Unless Otherwise Specified
IRF340 UNITS
Drain To Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
DS
400 V
Drain To Gate Voltage (RGS = 20kΩ) (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
DGR
400 V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
D
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
D
10
6.3
A A
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
DM
40 A
Gate To Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GS
±20 V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
125 W
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 W/oC
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
AS
520 mJ
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ,T
STG
-55 to 150
o
C
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
pkg
300 260
o
C
o
C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ= 25oC to 125oC.
Electrical Specifications T
C
= 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain To Source Breakdown Voltage BV
DSSID
= 250µA, VGS = 0V (Figure 10) 400 - - V
Gate Threshold Voltage V
GS(TH)VDS
= VGS, ID = 250µA 2.0 - 4.0 V
Zero Gate Voltage Drain Current I
DSS
VDS = Rated BV
DSS
, VGS = 0V - - 25 µA
VDS = 0.8 x Rated BV
DSS
, VGS = 0V, TJ = 150oC - - 250 µA
On-State Drain Current (Note 2) I
D(ON)VDS
> I
D(ON)
x r
DS(ON)MAX
, VGS = 10V 10 - - A
Gate to Source Leakage Current I
GSS
VGS = ±20V - - ±100 nA
Drain to Source On Resistance (Note 2) r
DS(ON)ID
= 5.2A, VGS = 10V (Figures 8, 9) - 0.4 0.550
Forward Transconductance (Note 2) g
fs
VDS≥ 50V, ID = 5.2A (Figure 12) 5.8 8 - S
Turn-On Delay Time
d(ON)
VDD = 200V, I
D
10A, R
G
= 9.1, RL = 19.5 (Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature
-1721ns
Rise Time t
r
-2741ns
Turn-Off Delay Time t
d(OFF)
-4575ns
Fall Time t
f
-2036ns
Total Gate Charge (Gate to Source + Gate to Drain)
Q
g(TOT)VGS
= 10V, ID = 10A, VDS = 0.8 x Rated BV
DSS
I
g(REF)
= 1.5mA (Figures 14, 19, 20) Gate Charge is
Essentially Independent of Operating Temperature
-4163nC
Gate to Source Charge Q
gs
-7-nC
Gate to Drain “Miller” Charge Q
gd
-23-nC
Input Capacitance C
ISS
VDS = 25V, VGS = 0V, f = 1MHz (Figure 11) - 1250 - pF
Output Capacitance C
OSS
- 300 - pF
Reverse Transfer Capacitance C
RSS
-80-pF
Internal Drain Inductance L
D
Measured between the Contact Screw on Header thatisCloser to Sourceand Gate Pins and Center of Die
Modified MOSFET Symbol Showing the Internal Device Inductances
- 5.0 - nH
Internal Source Inductance L
S
Measured from the Source Lead, 6mm (0.25in) from Header and Source Bonding Pad
- 12.5 - nH
Thermal Resistance Junction to Case R
θJC
- - 1.0oC/W
Thermal Resistance Junction to Ambient R
θJA
Free Air Operation - - 30oC/W
L
S
L
D
G
D
S
IRF340
3
Source To Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Continuous Source to Drain Current I
SD
Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Rectifier
- - 10 A
Pulse Source to Drain Current (Note 3) I
SDM
- - 40 A
Drain to Source Diode Voltage (Note 2) V
SD
TJ = 25oC, ISD = 9.2A, VGS = 0V (Figure 13) - - 2.0 V
Reverse Recovery Time t
rr
TJ = 25oC, ISD = 9.2A, dISD/dt = 100A/µs 170 350 790 ns
Reverse Recovery Charge Q
RR
TJ = 25oC, ISD = 9.2A, dISD/dt = 100A/µs 1.6 4.0 8.2 µC
NOTES:
2. Pulse Test: Pulse Width 300µs, Duty Cycle 2%.
3. Repetitive Rating: Pulse width limited by Max junction temperature. See Transient Thermal Impedance Curve (Figure 3).
4. VDD = 50V, starting TJ = 25oC, L = 9.2mH, RG = 25, peak IAS = 10A (Figures 15, 16).
Typical Performance Curves
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
G
D
S
0 50 100 150
0
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
0.2
0.4
0.6
0.8
1.0
1.2
25 50 75 100 125 150
10
8
6
4
2
0
TC, CASE TEMPERATURE (oC)
I
D
, DRAIN CURRENT (A)
10
-5
10
-4
10
-3
10
-2
0.1 1 10
1
0.1
0.01
10
-3
Z
θJC,
TRANSIENT THERMAL IMPEDANCE
t1, RECTANGULAR PULSE DURATION (s)
0.5
0.2
0.1
0.05
0.02
0.01 SINGLE PULSE
P
DM
t
1
t
2
NOTES: DUTY FACTOR: D = t
1/t2
PEAK TJ = PDM x Z
θJC
+ T
C
2
IRF340
Loading...
+ 4 hidden pages