HUF76429P3, HUF76429S3S
Data Sheet October 1999
44A, 60V, 0.025 Ohm, N-Channel, Logic
Level UltraFET Power MOSFET
Packaging
JEDEC TO-220AB JEDEC TO-263AB
SOURCE
DRAIN
(FLANGE)
HUF76429P3
DRAIN
GATE
GATE
SOURCE
HUF76429S3S
DRAIN
(FLANGE)
Symbol
D
G
S
File Number 4672.1
Features
• Ultra Low On-Resistance
-r
-r
= 0.022Ω, V GS= 10V
DS(ON)
= 0.025Ω, V GS= 5V
DS(ON)
• Simulation Models
- Temperature Compensated PSPICE
®
and SABER
©
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.semi.Intersil.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Switching Time vs R
GS
Curves
Ordering Information
PART NUMBER PACKAGE BRAND
HUF76429P3 TO-220AB 76429P
HUF76429S3S TO-263AB 76429S
NOTE: Whenordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUF76429S3ST.
Absolute Maximum Ratings T
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain Current
Continuous (TC= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Continuous (TC= 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Continuous (TC= 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figures 6, 17, 18
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
NOTES:
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
= 25oC, Unless Otherwise Specified
C
DSS
DGR
GS
DM
STG
pkg
HUF76429P3, HUF76429S3S UNITS
60 V
60 V
± 16 V
D
D
D
D
D
L
44
47
31
30
Figure 4
110
0.74
-55 to 175
300
260
A
A
A
A
W
W/oC
o
C
o
C
o
C
1
SABER is a Copyright of Analogy, Inc. 1-888-INTERSIL or 407-727-9207
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
UltraFET™ is a trademark of Intersil Corporation. PSPICE™ is a trademark of MicroSim Corporation.
| Copyright © Intersil Corporation 1999.
HUF76429P3, HUF76429S3S
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V
Drain to Source On Resistance r
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R
Thermal Resistance Junction to
Ambient
SWITCHING SPECIFICATIONS (V
= 4.5V)
GS
Turn-On Time t
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Turn-Off Time t
SWITCHING SPECIFICATIONS (V
GS
= 10V)
Turn-On Time t
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q
Gate Charge at 5V Q
Threshold Gate Charge Q
Gate to Source Gate Charge Q
Gate to Drain "Miller" Charge Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
DSSID
I
D
DSS
VDS = 55V, VGS = 0V - - 1 µ A
V
GSS
GS(TH)VGS
DS(ON)ID
θ JC
R
θ JA
ON
d(ON)
d(OFF)
OFF
ON
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(5)
g(TH)
ISS
OSS
RSS
VGS = ± 16V - - ± 100 nA
I
D
I
D
TO-220 and TO-263 - - 1.36oC/W
VDD = 30V, ID = 30A
VGS= 4.5V, RGS = 7.5Ω
(Figures 15, 21, 22)
r
f
VDD = 30V, ID = 47A
VGS= 10V,RGS = 8.2Ω
(Figures 16, 21, 22)
r
f
VGS = 0V to 5V - 21 25 nC
VGS = 0V to 1V - 1.3 1.6 nC
gs
gd
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 13)
= 250µ A, VGS = 0V (Figure 12) 60 - - V
= 250µ A, VGS = 0V , TC = -40oC (Figure 12) 55 - - V
= 50V, VGS = 0V, TC = 150oC - - 250 µ A
DS
= VDS, ID = 250µ A (Figure 11) 1 - 3 V
= 47A, VGS = 10V (Figures 9, 10) - 0.018 0.022 Ω
= 31A, VGS = 5V (Figure 9) - 0.021 0.025 Ω
= 30A, VGS = 4.5V (Figure 9) - 0.022 0.027 Ω
--6 2oC/W
- - 325 ns
-1 3-n s
- 203 - ns
-3 0-n s
-7 4-n s
- - 155 ns
- - 160 ns
- 7.8 - ns
- 100 - ns
-5 1-n s
- 104 - ns
- - 235 ns
= 0V to 10V VDD = 30V,
-3 84 6n C
ID = 31A,
I
= 1.0mA
g(REF)
(Figures 14, 19, 20)
- 3.8 - nC
- 9.7 - nC
- 1480 - pF
- 440 - pF
-9 0-p F
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
Reverse Recovery Time t
Reverse Recovered Charge Q
2
SD
RR
ISD = 44A - - 1.25 V
I
= 22A - - 1.00 V
SD
rr
ISD = 31A, dISD/dt = 100A/µ s- - 9 8 n s
ISD = 31A, dISD/dt = 100A/µ s - - 230 nC
Typical Performance Curves
HUF76429P3, HUF76429S3S
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θ JC
Z
THERMAL IMPEDANCE
SINGLE PULSE
0.01
-5
10
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
50
40
VGS= 10V
30
VGS= 4.5V
20
, DRAIN CURRENT (A)
D
I
10
0
25
50 75 100 125 150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENTvs
CASE TEMPERATURE
P
DM
t
1
NOTES:
DUTY FACTOR: D = t1/t
PEAK TJ = PDM x Z
-2
10
-1
10
θ JC
10
0
2
x R
θ JC
+ T
175
t
2
C
1
10
600
VGS = 10V
100
, PEAK CURRENT (A)
DM
I
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
30
-5
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
VGS = 5V
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
3
TC = 25oC
FOR TEMPERATURES
ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
0
10
C
150
1
10
HUF76429P3, HUF76429S3S
Typical Performance Curves (Continued)
300
100
OPERATION IN THIS
10
AREA MAY BE
LIMITED BY r
, DRAIN CURRENT (A)
D
I
SINGLE PULSE
T
= MAX RATED
J
TC = 25oC
1
1
DS(ON)
10 100
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
50
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
= 15V
V
DD
40
30
100µ s
1ms
10ms
100
STARTING TJ = 25oC
STARTING TJ = 150oC
If R = 0
, AVALANCHE CURRENT (A)
tAV = (L)(IAS)/(1.3*RATED BV
AS
I
If R ≠ 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
10
0.001 0.01 0.1 1
tAV, TIME IN AVALANCHE (ms)
DSS
- VDD)
DSS
- VDD) +1]
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
50
V
= 10V
GS
40
30
VGS = 5V
VGS = 4V
VGS = 3.5V
20
DRAIN CURRENT (A)
D,
I
10
0
1.5 2 2.5 3 3.5 4
VGS, GATE TO SOURCE VOLTAGE (V)
TJ= 175oC
TJ= -55oC
TJ= 25oC
20
, DRAIN CURRENT (A)
D
I
10
0
01234
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
40
ID = 44A
30
ID = 22A
, DRAIN TO SOURCE
20
ON RESISTANCE (mΩ )
DS(ON)
r
10
24681 0
, GATE TO SOURCE VOLTAGE (V)
V
GS
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
TC = 25oC
2.5
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 200
TJ, JUNCTION TEMPERATURE (oC)
VGS = 3V
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
TC = 25oC
VGS = 10V, ID = 47A
160
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
4
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
HUF76429P3, HUF76429S3S
Typical Performance Curves (Continued)
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
0.4
-80 -40 0 40 80 120
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µ A
160
200
FIGURE 11. NORMALIZED GATETHRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
3000
1000
C, CAPACITANCE (pF)
100
30
0.1 1.0 10 60
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS= 0V, f = 1MHz
C
= CGS + C
ISS
C
≅ CDS+ C
OSS
C
= C
RSS
GD
GD
GD
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
1.2
ID = 250µ A
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 200
, JUNCTION TEMPERATURE (oC)
T
J
160 160
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VDD = 30V
8
6
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
01 02 03 04 0
51 52 53 5
, GATE CHARGE (nC)
Q
g
WAVEFORMS IN
DESCENDING ORDER:
ID = 44A
= 22A
I
D
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 14. GATE CHARGE WAVEFORMSFORCONSTANT
GATE CURRENT
600
VGS = 4.5V, VDD = 30V, ID = 30A
450
t
r
300
t
150
SWITCHING TIME (ns)
0
0 1 02 03 04 05 0
RGS, GATE TO SOURCE RESISTANCE (Ω )
f
t
d(OFF)
t
d(ON)
250
VGS = 10V, VDD = 30V, ID = 47A
200
t
150
100
t
SWITCHING TIME (ns)
50
0
0 1 02 03 04 05 0
d(OFF)
RGS, GATE TO SOURCE RESISTANCE (Ω )
f
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
5
t
r
t
d(ON)
HUF76429P3, HUF76429S3S
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01Ω
0
t
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 1V
0
I
g(REF)
0
V
GS
Q
g(TH)
Q
gs
t
P
I
AS
t
AV
Q
g(TOT)
V
DS
Q
g(5)
VGS = 5V
Q
gd
V
DS
V
DD
VGS= 10V
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
V
DS
R
L
V
GS
+
V
DD
-
V
DS
0
DUT
R
GS
V
GS
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
10%
t
r
PULSE WIDTH
FIGURE 21. SWITCHING TIME TEST CIRCUIT FIGURE 22. SWITCHING TIME WAVEFORM
6
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
HUF76429P3, HUF76429S3S
PSPICE Electrical Model
.SUBCKT HUF76429 2 1 3 ; rev 25 June 1999
CA 12 8 1.95e-9
CB 15 14 1.95e-9
CIN 6 8 1.39e-9
7
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 68.05
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1e-9
LGATE 1 9 5.80e-9
LSOURCE 3 7 4.57e-9
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 7.8e-3
RGATE 9 20 2.80
RLDRAIN 2 5 10
RLGATE 1 9 54.2
RLSOURCE 3 7 41.6
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 6.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
GATE
1
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18
22
20
S1A
12
13
8
S1B
EGS EDS
6
8
13
10
RSLC2
6
14
13
+
+
6
8
-
-
DPLCAP
EVTHRES
+
S2A
S2B
5
RSLC1
51
+
5
ESLC
51
-
50
RDRAIN
16
21
-
19
8
MMED
MSTRO
CIN
15
CB
+
8
14
5
8
-
DBREAK
11
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17
18
-
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*117),3))}
.MODEL DBODYMOD D (IS = 1.28e-12 IKF = 11.5 RS = 5.25e-3 TRS1 = 1.78e-3 TRS2 = 1.85e-6 CJO = 1.68e-9 TT = 6.14e-8 M = 0.48 XTI = 4.35)
.MODEL DBREAKMOD D (RS = 2.27e-1 TRS1 = 9.10e-4 TRS2 = -1e-6)
.MODEL DPLCAPMOD D (CJO = 1.23e-9 IS = 1e-30 N = 10 M = 0.8)
.MODEL MMEDMOD NMOS (VTO = 1.98 KP = 3.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.80)
.MODEL MSTROMOD NMOS (VTO = 2.30 KP = 67 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.72 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 28.0 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.08e-3 TC2 = 1.35e-7)
.MODEL RDRAINMOD RES (TC1 = 8.25e-3 TC2 = 1.85e-5)
.MODEL RSLCMOD RES (TC1 = 4.97e-3 TC2 = 5.05e-6)
.MODEL RSOURCEMOD RES (TC1 = 1.5e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.85e-3 TC2 = -9.48e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.72e-3 TC2 = 9.50e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.2 VOFF= -2.4)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.4 VOFF= -6.2)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.1 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.1)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options ; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
HUF76429P3, HUF76429S3S
SABER Electrical Model
REV 25 June 1999
template huf76429 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 1.28e-12, cjo = 1.68e-9, tt = 6.14e-8, xti = 4.35, m = 0.48)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 1.23e-9, is = 1e-30, n = 10, m = 0.8)
m..model mmedmod = (type=_n, vto = 1.98, kp = 3.2, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.30, kp = 67, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 1.72, kp = 0.08, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -2.4)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.4, voff = -6.2)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.1, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.1)
c.ca n12 n8 = 1.95e-9
c.cb n15 n14 = 1.95e-9
c.cin n6 n8 = 1.39e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 5.80e-9
l.lsource n3 n7 = 4.57e-9
GATE
LGATE
1
RLGATE
RGATE
9
EVTEMP
+
20
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.08e-3, tc2 = 1.35e-7
res.rdbody n71 n5 = 5.25e-3, tc1 = 1.78e-3, tc2 = 1.85e-6
S1A
12
res.rdbreak n72 n5 = 2.27e-1, tc1 = 9.10e-4, tc2 = -1.00e-6
res.rdrain n50 n16 = 7.80e-3, tc1 = 8.25e-3, tc2 = 1.85e-5
res.rgate n9 n20 = 2.80
res.rldrain n2 n5 = 10
S1B
CA
res.rlgate n1 n9 = 54.2
res.rlsource n3 n7 = 41.6
res.rslc1 n5 n51 = 1e-6, tc1 = 4.97e-3, tc2 = 5.05e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 6.5e-3, tc1 = 1.5e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -1.72e-3, tc2 = 9.50e-7
res.rvthres n22 n8 = 1, tc1 = -1.85e-3, tc2 = -9.48e-6
spe.ebreak n11 n7 n17 n18 = 68.05
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/117))** 3))
}
}
10
RSLC2
-
6
ESG
8
+
6
-
18
22
13
14
8
13
13
+
+
6
EGS EDS
8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CIN
CB
-
+
-
5
RSLC1
51
50
RDRAIN
21
MSTRO
14
5
8
ISCL
16
8
MMED
RDBREAK
72
DBREAK
11
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17
18
-
7
-
+
22
RVTEMP
19
LDRAIN
RLDRAIN
RDBODY
71
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
8
HUF76429P3, HUF76429S3S
SPICE Thermal Model
REV 2 August 1999
HUF76429
CTHERM1 th 6 2.45e-3
CTHERM2 6 5 8.15e-3
CTHERM3 5 4 7.40e-3
CTHERM4 4 3 7.45e-3
CTHERM5 3 2 1.01e-2
CTHERM6 2 tl 7.49e-2
RTHERM1 th 6 9.00e-3
RTHERM2 6 5 1.80e-2
RTHERM3 5 4 9.15e-2
RTHERM4 4 3 2.43e-1
RTHERM5 3 2 3.50e-1
RTHERM6 2 tl 3.62e-1
SABER Thermal Model
SABER thermal model HUF76429
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 2.45e-3
ctherm.ctherm2 6 5 = 8.15e-3
ctherm.ctherm3 5 4 = 7.40e-3
ctherm.ctherm4 4 3 = 7.45e-3
ctherm.ctherm5 3 2 = 1.01e-2
ctherm.ctherm6 2 tl = 7.49e-2
rtherm.rtherm1 th 6 = 9.00e-3
rtherm.rtherm2 6 5 = 1.80e-2
rtherm.rtherm3 5 4 = 9.15e-2
rtherm.rtherm4 4 3 = 2.43e-1
rtherm.rtherm5 3 2 = 3.50e-1
rtherm.rtherm6 2 tl = 3.62e-1
}
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
RTHERM6
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
CASE
tl
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only.Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
9
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029