Intersil Corporation HMP8115 Datasheet

HMP8115
April 1998
Features
• (M) NTSC and (B, D, G, H, I, M, N, NC) PAL Operation
- ITU-R BT.601 (CCIR601) and Square Pixel Operation
• Digital Output Formats
- VMI Compatible
- 8-Bit, 16-Bit 4:2:2 YCbCr
- 15-Bit (5,5,5), 16-Bit (5,6,5) RGB
- Linear or Gamma-Corrected
- 8-Bit BT.656
• Analog Input Formats
- Three Analog Composite Inputs
- Analog Y/C (S-Video) Input
• “Sliced” VBI Data Capture Capabilities
- Closed Captioning
- Widescreen Signalling (WSS)
- BT.653 System B, C and D Teletext
- NABTS (North American Broadcast Teletext)
- WST (World System Teletext)
NTSC/PAL Video Decoder
Description
The HMP8115 is a high quality NTSC and PAL decoder with internal A/D converters. It is compatible with NTSC M, PAL B, D, G, H,I, M, N, and combination N (N
Both composite and S-video (Y/C) input formats are sup­ported. A 2-line comb filter plus a user-selectable chromi­nance trap filter provide high quality Y/C separation. User adjustments include brightness, contrast, saturation, hue, and sharpness.
Data during the vertical blanking interval (VBI), such as closed captioning, widescreen signalling and teletext, may be captured and output as BT.656 ancillary data. Closed captioning and widescreen signalling information may also be read out via the I
2
C interface.
Ordering Information
TEMP.
PART NUMBER
HMP8115CN 0 to 70 80 Ld PQFP Q80.14x20 HMPVIDEVAL/ISA Evaluation Board: ISA Frame Grabber
RANGE (oC) PACKAGE PKG. NO.
) video standards.
C
• 2-Line (1H) Comb Filter Y/C Separator
• Fast I
• Two 8-Bit ADCs
2
C Interface
Applications
• Multimedia PCs
• Video Conferencing
• Video Compression Systems
• Video Security Systems
• LCD Projectors and Overhead Panels
• Related Products
- NTSC/PAL Encoders: HMP815x, HMP817x
- NTSC/PAL Decoders: HMP8112A
• Related Literature
- AN9644: Composite Video Separation Techniques
- AN9716: Widescreen Signalling
- AN9717: YCbCr to RGB Considerations
- AN9728: BT.656 Video Interface for ICs
- AN9738: VMI Video Interface for ICs
NOTES:
1. PQFP is also known as QFP and MQFP.
2. Evaluation Board and Reference Design descriptions are in the Applications section.
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
1
File Number 4283.5
HMP8115HMP8115
Table of Contents
PAGE
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
External Video Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ANALOG VIDEO INPUTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ANTI-ALIASING FILTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
S-VIDEO CHROMA GAIN CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Digitization of Video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
A/D CONVERSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
AGC AND DC RESTORATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
INPUT SIGNAL DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
VERTICAL SYNC AND FIELD DETECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Y/C SEPARATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
INPUT SAMPLE RATE CONVERTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
COMB FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
CHROMA DEMODULATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
OUTPUT SAMPLE RATE CONVERTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
CLK2 INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Digital Processing of Video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
UV TO CbCr CONVERSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
DIGITAL COLOR GAIN CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
COLOR KILLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Y PROCESSING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
CbCr PROCESSING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
YCbCr OUTPUT FORMAT PROCESSING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
RGB OUTPUT FORMAT PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BUILT-IN VIDEO GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pixel Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
HSYNC AND VSYNC TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
FIELD TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BLANK AND DVALID TIMING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
PIXEL OUTPUT PORT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8-BIT YCbCr OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
16-BIT YCbCr, 15-BIT RGB, OR 16-RGB OUTPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8-BIT BT.656 OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
CLOSED CAPTIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
WIDESCREEN SIGNALLING (WSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
BT.656 ANCILLARY DATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
BT.656 CLOSED CAPTIONING AND WIDE SCREEN SIGNALLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
TELETEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
REAL TIME CONTROL INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
HMP8115 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
PCB LAYOUT CONSIDERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
EVALUATION BOARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
RELATED APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2
HMP8115
RATE
OUTPUT
SAMPLE
CONVERTER
USER
ADJUST.
RGB
LOGIC
VBIVALID
HSYNC
BLANK
TIMING
OUTPUT
AND
DVALID
FIFO
P[15:0]
VBI STATUS BITS
ADC
8-BIT
VBI
DETECTION AND
DECODING LOGIC
USER
ADJUST
TRAP
COLOR
Y/C
SEPARATION
COLOR
ADJUST
COLOR
DEMODULATION
INPUT
RATE
SAMPLE
CONVERTER
HSYNC
DETECT
PLL
CHROMA
ADC
8-BIT
LINE
LOCK
VSYNC
DETECT
PLL
SCL
SDA
CONTROL
INTERFACE AND
MICROPROCESSOR
LOCKED
VSYNC
FIELD
INTREQ
RESET
Functional Block Diagram
FILTER
EXTERNAL
ANTIALIASING
YIN
YOUT
NTSC-PAL1
-
+
MUX
INPUT
NTSC-PAL2
NTSC-PAL3/Y
BLACK LEVEL
WHITE PEAK LEVEL
DIGITAL COMPARATORS
AND
AGC
CLAMP
L_CAP
SYNC LEVEL
LOGIC
LAGC_CAP
DIGITAL COMPARATOR
AND
LOGIC
CLAMP
GAIN_CTRL
3
CLAMP
GAIN
CONTROL
C_CAP
-
+
C
FILTER
EXTERNAL
ANTIALIASING
Functional Block Diagram
(Continued)
(24.54, 27.0 OR 29.5MHz)
4FSC
CLOCK
CR[7:0]
C
M U X
C,CVBS
DAT A
4
INPUT
SAMPLE
RATE
CONVERTER
Y,CVBS
Y DATA
CLK
CHROMA PLL NCO
CLK TO
4FSC RATIO
C,CVBS
DAT A
LINE DELAY COMB FILTER
Y DATA
Y DATA
CHROMA
PLL LOOP
FILTER
C DATA
DEMODULATOR
M U X
CHROMA
Y DATA
HUE
ADJUST
AGC
ADJUST
U,V
HORIZONTAL
AND VERTICAL
SHARPNESS
ADJUST
CHROMA
PHASE
DETECTOR
SATURATION
ADJUST
CHROMA
TRAP
VSYNC
DETECT
U, V TO CbCr
COLOR
SPACE CONVERTER AND COLOR
KILLER
FIELD VSYNC
GENLOCK LOSS
LP FILTER
ENABLE
LINE LOCKED
PLL LOOP FILTER
LINE LOCKED
NCO
CbCr
OUTPUT
SAMPLE
RATE
CONVERTER
Y
HSYNC
DETECT
HSYNC
LOCKED
SYNC
STRIPPER,
BRIGHTNESS,
AND CONTRAST
ADJUST
HMP8115
VBI DETECTION
AND DECODING LOGIC
SHARPNESS
ADJUST
ENABLE
LP FILTER
ENABLE
M U X
HSYNC,VSYNC, BLANK,
FIELD,
STANDARD
SELECT
P[15:0]
DVALID, VBIVALID
RGB
LOGIC
MUX MUX
OUTPUT
TIMING
AND
FIFO
HMP8115
Introduction
The HMP8115 is designed to decode baseband composite or S-video NTSC and PAL signals, and convert them to either digital YCbCr or RGB data. In addition to performing the basic decoding operations, the HMP8115 includes hard­ware to decode different types of VBI data and to generate digital video patterns for a blue screen, black screen and full screen color bars.
The digital PLLs are designed to synchronize to all NTSC and PAL standards. A chroma PLL is used to maintain chroma lock for demodulation of the color information; a line­locked PLL is used to maintain vertical spatial alignment. The PLLs are designed to maintain lock even in the event of VCR headswitches and multipath noise.
The HMP8115 contains two 8-bit A/D converters and an I
2
interface for programming internal registers.
External Video Processing
Before a video signal can be digitized the decoder has some external processing considerations that need to be addressed. This section discusses those external aspects of the HMP8115.
ANALOG VIDEO INPUTS
The HMP8115 supports either three composite or two com­posite and one S-video input.
inside the decoder as determined by bits 7 and 6 of the COLOR PROCESSING register 06
. In addition to the inter-
H
nal AGC, the designer can also apply some gain to the chroma before it reaches the internal AGC logic. This gain is controlled by pin 28. The voltage at this pin determines the gain of the chroma before it gets digitized by the chroma A/D with a typical gain performance as shown in Figure 2.
7
TEMPERATURE = 25oC V
= 5V
CC
6
5
4
C
3
LINEAR GAIN
2
1
0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 CONTROL VOLTAGE ON THE GAIN_CTRL PIN
FIGURE 2. CHROMINANCE AMPLIFIER GAIN
Digitization of Video
Three analog video inputs (NTSC/PAL 1-3) are used to select which one of three composite video sources are to be decoded. To support S-video applications, the Y channel drives the NTSC/PAL 3 analog input, and the C channel drives the C analog input.
The analog inputs must be AC-coupled to the video signals, as shown in the Applications section.
ANTI-ALIASING FILTERS
An external anti-alias filter is required to achieve optimum performance and prevent high frequency components from being aliased back into the video image.
For the NTSC/PAL 1-3 inputs, a single filter is connected between the YOUT and YIN pins. For the C input, the anti­aliasing filter should be connected before the C input. A rec­ommended filter is shown in Figure 1.
R
YOUT YIN
FIGURE 1. RECOMMENDED ANTI-ALIASING FILTER
332
1
C
33pF
L
1
8.2µH
C
1
82pF
2
R
2
4.02K
S-VIDEO CHROMA GAIN CONTROL
The Chroma portion of S-video is AC coupled through an anti-aliasing filter as shown in the applications section. Unlike the composite/luma inputs, the Automatic Gain Con­trol (AGC) for the chroma portion of S-video is done digitally
Prior to A/D conversion, the video signal is DC restored and gained to generate known video levels into the digital pro­cessing logic. This process is addressed in the “AGC and DC Restoration” section. After digitization, sample rate con­verters and a comb filter are used to perform color separa­tion and demodulation.
A/D CONVERSION
Video data is sampled at the CLK2 frequency then pro­cessed by the input sample rate converter. The output levels of the ADC after AGC processing are:
(M) NTSC (B, D, G, H, I, N
)
C
(M, N) PAL PAL
white 224 213 black 76 64 blank 64 64 sync 0 0
AGC AND DC RESTORATION
The AGC amplifier attenuates or amplifies the analog video signal to ensure that the sync tip level generates code 0. The difference from the ideal sync tip level of 0 is used to control the amount of attenuation or gain of the analog video signal. The capacitor on the LAGC_CAP pin is used to store the voltage which sets the gain level of the input video amplifier.
DC restoration positions the video signal such that the DC level of the back porch generates an average code 64. The back porch is sampled to determine the average value. The capacitor on the L_CAP pin is used to store the voltage
5
HMP8115
which sets the DC offset level into the input video amplifier. During the S-video mode of operation the capacitor on the C_CAP pin performs the same function as the L_CAP capacitor, except the chroma video amplifier’s DC offset is set so that the chroma A/D generates a code of 128 during the back porch. The internal timing windows for AGC and DC Restoration are show in Figure 3.
VIDEO INPUT
DC RESTORE
AGC
FIGURE 3. AGC AND DC RESTORE INTERNAL TIMING
INPUT SIGNAL DETECTION
It is assumed there is no video input if a horizontal sync is not detected for 16 consecutive lines. When no video has been detected, nominal video timing is generated for the previously detected or programmed standard. A maskable interrupt is included to flag when no video has been detected (bit 6 of the INTERRUPT MASK register 0F
) allowing for
H
blue/black/color bar output modes to be enabled if desired. The vertical sync interrupt can be used in determining when a video signal is present at the currently selected video mux input. Bit 0 of register 0F
is used to enable vertical sync
H
interrupts.
VERTICAL SYNC AND FIELD DETECTION
The vertical sync and field detect circuit uses a low time counter to detect the vertical sync sequence in the video data stream. The low time counter accumulates the low time encountered during any sync pulse, including serration and equalization pulses. When the low time count exceeds the vertical sync detect threshold, ately. FIELD is asserted at the same time that asserted. FIELD is asserted low for odd fields and high for evenfields. Field is determined from the location in the video line where VSYNC is detected. If VSYNC is detected in the first half of the line, the field is odd. If VSYNC is detected in the second half of a line, the field is even.
In the case of lost vertical sync or excessive noise that would prevent the detection of vertical sync, the FIELD output will continue to toggle. Lost vertical sync is declared if after 337 lines, a vertical sync period was not detected for 1 or 3 (selectable) successive fields as specified by bit 2 of the GENLOCK CONTROL register 04 PLLs are initialized to the acquisition state.
VSYNC is asserted immedi-
VSYNC is
. When this occurs, the
H
Y/C SEPARATION
A composite video signal has the luma (Y) and chroma (C) information mixed in the same video signal. The Y/C separa­tion process is responsible for separating the composite video signal into these two components. The HMP8115 uti­lizes a comb filter to minimize the artifacts that are associ­ated with the Y/C separation process.
INPUT SAMPLE RATE CONVERTER
The input sample rate converter is used to convert video data sampled at the CLK2 rate to a virtual 4xf
sample rate
SC
for comb filtering and color demodulation. An interpolating filter is used to generate the 4xf
samples as illustrated in
SC
Figure 4.
INCOMING VIDEO SAMPLES
TIME
RESAMPLED VIDEO
TIME
4xf
SC
FIGURE 4. SAMPLE RATE CONVERSION
COMB FILTER
A 2-line comb filter, using a single line delay, is used to per­form part of the Y/C separation process. During S-video operation, the Y signal bypasses the comb filter; the C signal is processed by the comb filter since it is an integral part of the chroma demodulator. During PAL operation, the chroma trap filter should also be enabled for improved performance.
Since a single line store is used, the chroma will normally have a half-line vertical offset from the luma data. This may be eliminated, vertically aligning the chroma and luma sam­ples, at the expense of vertical resolution of the luma. Bit 0 of the OUTPUT FORMAT register 02
controls this option.
H
CHROMA DEMODULATION
The output of the comb filter is further processed using a patented frequency domain transform to complete the Y/C separation and demodulate the chromanance.
Demodulation is done at a virtual 4xf
sample rate using
SC
the interpolated data samples to generate U and V data. The demodulation process decimates by 2 the U/V sample rate.
OUTPUT SAMPLE RATE CONVERTER
The output sample rate converter converts the Y, U and V data from a virtual 4xf sample rate (i.e., 13.5MHz). It also vertically aligns the sam­ples based on the horizontal sync information embedded in the digital video data stream. The output sample rate is determined by the selected video standard and whether
sample rate to the desired output
SC
6
HMP8115
square or rectangular pixels are output. The output format is 4:2:2 for all modes except the RGB modes which use a 4:4:4 output format.
CLK2 INPUT
Note that the color subcarrier is derived from CLK2. Any jitter on CLK2 will be transferred to the color subcarrier, resulting in color changes. Thus, CLK2 should be derived from a sta­ble clock source, such as a crystal. The use of a PLL to gen­erate CLK2 is not recommended. CLK2 must have a 50ppm accuracy and at least a 60/40% duty cycle to ensure proper operation.
The CLK2 clockrate must be one of the followingfrequencies:
24.54MHz
27.00MHz
29.50MHz
The frequency of CLK2 must be 2x the desired output sam­ple rate. The values in Table 1 below indicate the CLK2 clock rate based on the video standard and pixel mode. The out­put sample rate for the given video standard and pixel mode is half the CLK2 clock rate.
TABLE 1. VIDEO STANDARD CLOCK RATE SELECTION
SUMMARY
ALLOWABLE CLK2
FREQUENCIES (MHz)
RECTANGULAR
VIDEO FORMAT
(M) NTSC 27.00 24.54 (B, D, G, H, I, N) PAL 27.00 29.50 (M) PAL 27.00 24.54 (NC) PAL 27.00 29.50
PIXEL MODE
SQUARE
PIXEL MODE
with the two previous lines having a color burst to limit line­to-line variations. A gain of 0.5x to 4x is used for Cb and Cr.
If “fixed gain control” is selected, the amplitude of the color difference signals (CbCr) is multiplied by a constant, regard­less of variations in the color burst amplitude. The constant gain value is specified by the COLOR GAIN register 1C
.A
H
gain of 0.5x to 4x is used for Cb and Cr. Limiting the gain to 4x limits the amount of amplified noise.
If “freeze automatic gain control” is selected, the amplitude of the color difference signals (CbCr) is multiplied by a con­stant. This constant is the value the AGC circuitry generated when the “freeze automatic gain” command was selected.
COLOR KILLER
If “enable color killer” is selected, the color output is turned off when the running average of the color burst amplitude is below approximately 25% of nominal for four consecutive fields. When the running average of the color burst ampli­tude is above approximately 25% of nominal for four consec­utive fields, the color output is turned on. The color output is also turned off when excessive phase error of the chroma PLL is present.
If “force color off” is selected, color information is never present on the outputs.
If “force color on” is selected, color information is present on the outputs regardless of the color burst amplitude or chroma PLL phase error.
Y PROCESSING
The black level is subtracted from the luminance data to remove sync and any blanking pedestal information. Nega­tive values of Y are supported at this point to allow proper decoding of “below black” luminance levels.
Digital Processing of Video
Once the luma and chroma have been separated the HMP8115 then performs programmable modifications (i.e. contrast, coring, color space conversions, color AGC,etc.) to the decoded video signal.
UV TO CbCr CONVERSION
The baseband U and V signals are scaled and offset to gen­erate a nominal range of 16-240 for both the Cb and Cr data.
DIGITAL COLOR GAIN CONTROL
There are four types of color gain control modes available: no gain control, automatic gain control, fixed gain control, and freeze automatic gain control.
If “no gain control” is selected, the amplitude of the color dif­ference signals (CbCr) is not modified, regardless of varia­tions in the color burst amplitude. Thus, a gain of 1x is always used for Cb and Cr.
If “automatic gain control” is selected, the amplitude of the color difference signals (CbCr) is compensated for variations in the color burst amplitude. The burst amplitude is averaged
Scaling is done to position black at 8-bit code 0 and white at 8-bit code 219.
A chroma trap filter may be used to remove any residual color subcarrier from the luminance data. The center fre­quency of the chroma trap is automatically determined from the video standard being decoded. The chroma trap should be disabled during S-video operation to maintain maximum luminance bandwidth. Alternately, a 3MHz lowpass filter may be used to remove high-frequency Y data. This may make a noisy image more pleasing to the user, although softer.
Coring of the high-frequency Y data may be done to reduce low-level high frequency noise.
Coring of the Y data may also be done to reduce low-level noise around black. This forces Y data with the following val­ues to a value of 0:
coring = 1: ± 1 coring = 2: ± 1, ± 2 coring = 3: ± 1, ± 2. ± 3
High-frequency components of the luminance signal may be “peaked” to control the sharpness of the image. Maximum gain may be selected to occur at either 2.6MHz or the color
7
HMP8115
subcarrier frequency. This may be used to make the dis­played image more pleasing to the user. It should not be used if the output video will be compressed, as the circuit introduces high-frequency components that will reduce the compression ratio.
The brightness control adds or subtracts a user-specified DC offset to the Y data. The contrast control multiplies the Y data by a user-specified amount. These may be used to make the displayed image more pleasing to the user.
Finally, a valueof 16 is added to generate a nominal range of 16 (black) to 235 (white).
CbCr PROCESSING
The CbCr data is lowpass filtered to either 0.85 or 1.5MHz. Coring of the CbCr data may be done to reduce low-level
noise around zero. This forces CbCr data with the following values to a value of 128.
coring = 1: 127, 129 coring = 2: 126, 127, 129, 130 coring = 3: 125, 126, 127, 129, 130, 131
The saturation control multiplies the CbCr data by a user­specified amount. This may be used to make the displayed image more pleasing to the user. The CbCr data may also be optionally multiplied by the contrast value to avoid color shifts when changing contrast.
The hue control provides a user-specified phase offset to the color subcarrier during decoding. This may be used to cor­rect slight hue errors due to transmission.
YCbCr OUTPUT FORMAT PROCESSING
Y has a nominal range of 16 to 235. Cb and Cr have a nomi­nal range of 16 to 240, with 128 corresponding to zero. Val­ues less than 1 are made 1 and values greater than 254 are made 254.
While
BLANK is asserted, Y is forced to have a value of 16, with Cb and Cr forced to have a value of 128, unless VBI data is present.
RGB OUTPUT FORMAT PROCESSING
The 4:2:2 YCbCr data is converted to 4:4:4 YCbCr data and then converted to either 15-bit or 16-bit gamma-corrected RGB (RGB) data. While forced to a value of 0.
BLANK is asserted, RGB data is
The 15-bit RGBdata may be converted to 15-bit linear RGB, using the following equations. Although the PAL speci­fications specify a gamma of 2.8, a gamma of 2.2 is normally used. The HMP8115 allows the selection of the gamma to be either 2.2 or 2.8, independent of the video standard.
for gamma = 2.2:
for RGB < 0.0812*31
R = (31)((R/31)/4.5) G = (31)((G/31)/4.5) B = (31)((B/31)/4.5)
for RGB >= 0.0812*31
R = (31)(((R/31) + 0.099)/1.099) G = (31)(((G/31) + 0.099)/1.099) B = (31)(((B/31) + 0.099)/1.099)
2.2
2.2
2.2
for gamma = 2.8:
R = (31)(R/31) G = (31)(G/31) B = (31)(B/31)
2.8
2.8
2.8
16-Bit RGB
The following YCbCr to RGBequations are used to main­tain the proper black and white levels:
R = 0.142(Y - 16) + 0.194(Cr - 128) G = 0.288(Y - 16) - 0.201(Cr - 128) - 0.097(Cb - 128) B = 0.142(Y - 16) + 0.245(Cb - 128)
The resulting 16-bit RGBdata has a range of 0 to 31 for R and B, and a range of 0 to 63 for G. Values less than 0 are made 0; Rand Bvalues greater than 31 are made 31, G values greater than 63 are made 63.
The 16-bit RGBdata may be converted to 16-bit linear RGB, using the following equations. Although the PAL speci­fications specify a gamma of 2.8, a gamma of 2.2 is normally used. The HMP8115 allows the selection of the gamma to be either 2.2 or 2.8, independent of the video standard.
for gamma = 2.2:
for RB < 0.0812*31, G < 0.0812*63
R = (31)((R/31)/4.5) G = (63)((G/63)/4.5) B = (31)((B/31)/4.5)
15-Bit RGB
The following YCbCr to RGBequations are used to main­tain the proper black and white levels:
R = 0.142(Y - 16) + 0.194(Cr - 128) G = 0.142(Y - 16) - 0.099(Cr - 128) - 0.048(Cb - 128) B = 0.142(Y - 16) + 0.245(Cb - 128)
The resulting 15-bit RGBdata has a range of 0 to 31. Val­ues less than 0 are made 0 and values greater than 31 are made 31.
for RB >= 0.0812*31, G >= 0.0812*63
R = (31)(((R/31) + 0.099)/1.099) G = (63)(((G/63) + 0.099)/1.099) B = (31)(((B/31) + 0.099)/1.099)
2.2
2.2
2.2
for gamma = 2.8:
R = (31)(R/31) G = (63)(G/63) B = (31)(B/31)
2.8
2.8
2.8
8
HMP8115
BUILT-IN VIDEO GENERATION
When the blue screen, black screen or color bar output is selected, a full-screen of blue, black or 75% colorbar output is generated using the currently selected output format. The type of screen to be generated is determined by bits 2 and 1 of the OUTPUT FORMAT register 02
. When built-in video
H
generation is not desired, the bits need to be set for normal operation to pass decoded video.
If a video source is input, it will be used to provide the video timing. If an input video source is not detected, internally­generated video timing will be used.
Pixel Port Timing
The the timing and format of the output data and control sig­nals is presented in the following sections.
HSYNC AND VSYNC TIMING
The HSYNC and VSYNC output timing is VMI v1.4 compati­ble. Figures 5-8 illustrate the video timing. The leading edge of HSYNC is synchronous to the video input signal and has
NTSC(M)
LINE #
PAL(M) LINE #
523
1
2345678910525524
5245251234567522521
a fixed latency due to internal pipeline processing. The pulse width of the 36H, where the trailing edge of
HSYNC is defined by the END HSYNC register
HSYNC has a programmable
delay of 0-510 CLK2 cycles from the leading edge. The leading edge of
VSYNC is asserted approximately half way through the first serration pulse of each field. For an odd field, the trailing edge of the trailing edge of the
VSYNC is 5±1 CLK2 cycles after
HSYNC that follows the last equaliza­tion pulse. Refer to Figures 5 and 7. For an even field, the trailing edge of ing edge of the
VSYNC is 5±1 CLK2 cycles leading the lead-
HSYNC that follows the last equalization
pulse. Refer to Figures 6 and 8.
FIELD TIMING
When field information can be determined from the input video source, the FIELD output pin reflects the video source field state. When field information cannot be determined from the input video source, the FIELD output pin alternates its state at the beginning of each field. FIELD changes state 5
±1 CLK2 cycles before the leading edge of VSYNC.
VIDEO INPUT
HSYNC
VSYNC
FIELD
NOTE:
3. The trailing edge of VSYNC is 5±1 clocks after the trailing edge of HSYNC to be VMI compatible and to indicate atransitiontoanoddfield.
FIGURE 5. NTSC(M) AND PAL(M) HSYNC, VSYNC AND FIELD TIMING DURING AN EVEN TO ODD FIELD TRANSITION
NTSC(M)
LINE #
PAL(M)
LINE #
VIDEO INPUT
HSYNC
VSYNC
‘EVEN’ FIELD
264 261
265 266 267 268 269 270 271 272 273263262 262 263 264 265 266 267 268 269 270260259
‘ODD’ FIELD
FIELD
NOTE:
4. The trailingedgeof VSYNC is5±1clocksafter the leading edge of HSYNC to be VMI compatible and to indicate a transitiontoaneven field.
FIGURE 6. NTSC(M) AND PAL(M) HSYNC, VSYNC AND FIELD TIMING DURING AN ODD TO EVEN FIELD TRANSITION
‘ODD’ FIELD ‘EVEN’ FIELD
9
VIDEO
INPUT
HSYNC
VSYNC
HMP8115
623LINE # 6246251234567622621
FIELD
NOTE:
5. The trailing edgeofVSYNCis5±1 clocks after the trailing edge of HSYNC istobeVMIcompatibleandtoindicateatransitiontoanoddfield.
FIGURE 7. PAL(B,D,G,H,I,N,NC) HSYNC, VSYNC AND FIELD TIMING DURING AN EVEN TO ODD FIELD TRANSITION
VIDEO INPUT
HSYNC
VSYNC
FIELD
NOTE:
6. The trailingedgeof VSYNC is5±1clocksafter the leading edge of HSYNC to be VMI compatible and to indicate a transitiontoaneven field.
FIGURE 8. PAL(B,D,G,H,I,N,NC) HSYNC, VSYNC AND FIELD TIMING DURING AN ODD TO EVEN FIELD TRANSITION
‘EVEN’ FIELD
311LINE # 312 313 314 315 316 317 318 319 320310309
‘ODD’ FIELD ‘EVEN’ FIELD
BLANK AND DVALID TIMING
DVALID is asserted when P15-P0 contain valid data. The timing and behavior of video format and the programmed values for bit 4 (DVLD_DCYC) and bit 5 (DVLD_LTC) of the GENLOCK CONTROL register 04 format sections that follow for the specific behavior for DVALID.
BLANK is used to determine if the HMP8115 is generating active video data. DVALID to capture digital data from the decoder. BLANK, DVALID and the video data are output after the internal pipe­line latency and synchronous with the rising edge of CLK2.
DVALID is dependent on the output
. Refer to the specific output video
H
BLANK should be used in conjunction with
‘ODD’ FIELD
During active scan lines
BLANK is negated when the hori­zontal pixel count matches the value in the END H_BLANK register 32 the leading edge of the sync tip after leaving the part.
. A count of 00Hcorresponds to the 50% point of
H
BLANK is asserted when the horizontal pixel count matches the value in the START H_BLANK register 31 tally,
BLANK is programmable with two pix el resolution.
START V_BLANK register 34 ister 35
determine which scan lines are blanked for each
H
H
field. During inactive scan lines,
/30H. Note that horizon-
H
/33Hand END V_BLANK reg-
BLANK is asserted during the entire scan line. Half-line blanking of the output video cannot be done. Reference Figure 9 for active video timing and use Table 2 for typical blanking programming values.
VIDEO STANDARD
(MSB/LSB)
RECTANGULAR PIXELS
NTSC (M), PAL (M)
PAL (B, D, G, H, I,N, NC)
SQUARE PIXELS
NTSC (M), PAL (M)
PAL (B, D, G, H, I,N, NC)
TABLE 2. TYPICAL VALUES FOR HBLANK AND VBLANK REGISTERS
ACTIVE PIXELS/
LINE
720 720
640 768
TOTAL
PIXELS/
LINE
858 864
780 944
LAST
PIXEL
COUNT
857 (0359H) 863 (035FH)
779 (030BH) 943 (03AFH)
START H_BLANK (31H/30H)
842 (034AH) 852 (0354H)
758 (02F6H) 922 (039AH)
END
H_BLANK
(32H)
122 (7AH) 132 (84H)
118 (76H) 154 (9AH)
10
START V_BLANK (34H/33H)
259 (0103H) 310 (0136H)
259 (0103H) 310 (0136H)
END
V_BLANK
(35H)
19 (13H) 22 (16H)
19 (13H) 22 (16H)
HMP8115
480 ACTIVE LINES/FRAME (NTSC, PAL M)
NTSC M PAL B, D, G, H, I, N, N
LINES 1 - 22 NOT ACTIVE
240 ACTIVE LINES
PER FIELD
(LINES 23-262)
LINES 263 - 284 NOT ACTIVE
240 ACTIVE LINES
PER FIELD
(LINES 285 - 524)
LINE 525
NOT ACTIVE
TOTAL PIXELS
ACTIVE PIXELS
ODD FIELD
SYNC AND
PORCH
VERTICAL BLANKING
EVEN FIELD
FRONT PORCH
NUMBER OF PIXELS
RECTANGULAR (SQUARE)
NTSC PAL
858 720
(780) (640)
864 720
BACK
(944) (768)
LINES 1 - 22 NOT ACTIVE
288 ACTIVE LINES
PER FIELD
(LINES 23 - 310)
LINES 311 - 335 NOT ACTIVE
288 ACTIVE LINES
PER FIELD
(LINES 336 - 623)
LINES 624-625
TOTAL PIXELS
ACTIVE PIXELS
C
NOT ACTIVE
576 ACTIVE
LINES/FRAME
NOTE:
7. The line numbering for PAL (M) followings NTSC (M) line count minus 3 per the video standards.
FIGURE 9. TYPICAL ACTIVE VIDEO REGIONS
TABLE 3. PIXEL OUTPUT FORMATS
PIN NAME 8-BIT, 4:2:2, YCbCr 16-BIT, 4:2:2, YCbCr 15-BIT, RGB, (5,5,5) 16-BIT, RGB, (5,6,5) BT.656
P0 P1 P2 P3 P4 P5 P6 P7
P8 P9
P10 P11 P12 P13 P14 P15
0 0 0 0 0 0 0 0
Y0, Cb0, Cr0 Y1, Cb1, Cr1 Y2, Cb2, Cr2 Y3, Cb3, Cr3 Y4, Cb4, Cr4 Y5, Cb5, Cr5 Y6, Cb6, Cr6 Y7, Cb7, Cr7
Cb0, Cr0 Cb1, Cr1 Cb2, Cr2 Cb3, Cr3 Cb4, Cr4 Cb5, Cr5 Cb6, Cr6 Cb7, Cr7
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
B0 B1 B2 B3
B4 G0 G1 G2
G3 G4 R0 R1 R2 R3 R4
0
B0 B1 B2 B3 B4 G0 G1 G2
G3 G4 G5 R0 R1 R2 R3 R4
YCbCr Data,
Ancillary Data,
SAV and EAV
Sequences
(PAL)
0 0 0 0 0 0 0 0
PIXEL OUTPUT PORT
Pixel data is output via the P0-P15 pins. Refer to Table 3 for the output pin definition as a function of the output mode.
8-BIT YCbCr OUTPUT
The DVALID output pin may be configured to operate in one of two ways. The configuration is determined by the DVLD_LTC bit (bit 4) of the GENLOCK CONTROL register 04
.
H
If DVLD_LTC=0, the during the entire active video time on active scan lines if CLK2 is exactly 2x the desired output sample rate. asserted indicates valid pixel data is present on the P15-P8 pixel outputs. intervals. Refer to Figure 10.
DVALID output is continuously asserted
DVALID being
DVALID is never asserted during the blanking
If DLVD_LTC=1,
DVALID has the same internal timing as the first mode, but is ANDed with the CLK2 signal, and the result is output onto the
DVALID pin. This results in a gated CLK2 signal being output during the active video time on active scan lines. Refer to Figure 11.
If 8-bit YCbCr data is generated, it is output following each rising edge of CLK2. The YCbCr data is multiplexedas [Cb Y Cr YCbYCrY′...], with the first active data each scan line containing Cb data. The pixel output timing is shown in Fig­ures 10 and 11.
BLANK, HSYNC, VSYNC, DVALID, VBIVALID, and FIELD are output following the rising edge of CLK2. When is asserted and
VBIVALID is deasserted, the YCbCr outputs
have a value of 16 for Y and 128 for Cb and Cr.
11
BLANK
CLK
DVALID
BLANK
HMP8115
P[15-8]
NOTE:
t
DVLD
Cb
Y
0
0
Cr
Y
0
Cb
1
Y
2
2
Cr
Y
2
3
Cb
Y
4
4
8. Y0is the first active luminance pixel data of a line. Cb0and Cr0are first active chrominance pixel data in a line. Cb and Cr will alternate every cycle due to the 4:2:2 subsampling. Pixel data is not output during the blanking period, but the values on the ports are forced to blanking levels.
FIGURE 10. OUTPUT TIMING FOR 8-BIT YCbCr MODE (DVLD_LTC = 0)
CLK
DVALID
BLANK
P[15-8]
NOTES:
t
DVLD
Cb
Y
0
0
Cr
Y
0
Cb
1
Y
2
2
Cr
Y
2
Cb
3
Y
4
4
9. Y0is the first active luminance pixel data of a line. Cb0and Cr0are first active chrominance pixel data in a line. Cb and Cr will alternate every cycle due to the 4:2:2 subsampling. Pixel data is not output during the blanking period, but the values on the ports are forced to blanking levels.
10. When DVLD_LTC is set to 1, the polarityof DVALID needs to be set to active low, otherwiseDVALID will stay low during active video and be gated with the clock only during the blanking interval.
FIGURE 11. OUTPUT TIMING FOR 8-BIT YCbCr MODE (DVLD_LTC = 1)
16-BIT YCbCr, 15-BIT RGB, OR 16-RGB OUTPUT
In these output modes, DVALID may be configured to oper­ate in one of four modes as controlled by the DVLD_LTC and DVLD_DCYC bits of the GENLOCK CONTROL register (04
). Bit 4 is the DVLD_LTC bit and bit 5 is the
H
DVLD_DCYC bit. If DVLD_LTC=0 and DVLD_DCYC=0,
only during the active video time on active scan lines. Thus, DVALID being asserted indicates valid pixel data is present on the P0-P15 pixel outputs.
DVALID is never asserted dur­ing the blanking intervals. In this mode 50% duty cycle only during the active video times. The tim­ing diagrams for this mode can be found in Figures 12 and
13. If DVLD_LTC=0 and DVLD_DCYC=1,
same as the first mode, with the exception that not have a 50% duty cycle. This mode is intended for back­ward compatibility with HMP8112(A) timing dependencies in
DVALID is present
DVALID will have a
DVALID behaves the
DVALID does
which
DVALID did not have a 50% duty cycle timing and other timing variations. The timing diagrams for this mode can be found in Figures 14 and 15.
If DVLD_LTC=1 and DVLD_DCYC=0, entire line time on all scan lines.
DVALID is present the
DVALID may occasionally be negated for two consecutive CLK2 cycles just prior to active video. In this mode
DVALID is guaranteed have a 50% duty cycle only during the active video times. The timing for this mode differs from the timing shown in Figures 12 and 13 only in that
DVALID will also be asserted during the blanking
portion of the video line time as described above. If DVLD_LTC=1 and DVLD_DCYC=1,
during the entire line time on all scan lines.
DVALID is present
DVALID is asserted during the blanking intervals as needed to ensure a constant number of total samples per line. The timing for this mode differs from the timing shown in Figures 14 and 15 only in that
DVALID will also be asserted during the blanking
portion of the video line time as described above.
12
HMP8115
If 16-bit YCbCr, 15-bit RGB data, or 16-bit RGB data is gen­erated, it is output following the rising edge of CLK2 while DVALID is asserted. Either linear or gamma-corrected RGB data may be output. The pixel output timing is shown in Fig­ures 12 to 15.
CLK
DVALID
BLANK
Cb
Y
0
0
Y
1
Cr
0
P15-P8
P7-P0
t
DVLD
BLANK, HSYNC, VSYNC, DVALID, VBIVALID, and FIELD are output following the rising edge of CLK2. When is asserted and
VBIVALID is deasserted, the YCbCr outputs
BLANK
havea value of 16 for Y and 128 for Cb and Cr; the RGB out­puts have a value of 0.
Cb
Y
2
2
Y
3
Cr
2
Cb
Y
4
4
NOTES:
11. Y0is the first active luminance pixel data of a line. Cb0and Cr0are first active chrominance pixel data in a line. Cb and Cr will alternate every cycle due to the 4:2:2 subsampling.
12. BLANK is asserted per Figure 9.
FIGURE 12. OUTPUT TIMING FOR 16-BIT YCbCr MODE (DVLD_LTC = 0, DVLD_DCYC = 0)
CLK
DVALID
P15-P11
[P14-P10]
P10-P5
[P9-P5]
P4-P0
t
NOTE:
DVLD
13. BLANK is asserted per Figure 9.
FIGURE 13. OUTPUT TIMING FOR 16-BIT [15-BIT] RGB MODE (DVLD_LTC = 0, DVLD_DCYC = 0)
R
0
G
0
B
0
R
1
G
1
B
1
R
2
G
2
B
2
R
3
G
3
B
3
R
4
G
4
B
4
13
Loading...
+ 30 hidden pages