600V, SMPS Series N-Channel IGBT with
Anti-Parallel Hyperfast Diode
The HGT1S3N60A4DS and the HGTP3N60A4D are MOS
gated high voltage switching devices combining the best
featuresof MOSFETs and bipolar transistors. These devices
have the high input impedance of a MOSFET and the low
on-state conduction loss of a bipolar transistor. The much
lower on-state voltage drop varies only moderately between
o
25
C and 150oC. The IGBT used is the development type
TA49327. The diode used in anti-parallel is the development
type TA49369.
This IGBT is ideal for many high voltage switching
applications operating at high frequencies where low
conduction losses are essential. This device has been
optimized for high frequency switch mode power
supplies.
Formerly Developmental Type TA49329.
Ordering Information
File Number4818
Features
• >100kHz Operation At 390V, 3A
• 200kHz Operation At 390V, 2.5A
• 600V Switching SOA Capability
• Typical Fall Time. . . . . . . . . . . . . . . . . 70ns at T
• Low Conduction Loss
• Temperature Compensating SABER™ Model
www.intersil.com
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
PKG
300
260
o
C
o
C
o
C
NOTE:
1. Pulse width limited by maximum junction temperature.
Electrical SpecificationsT
= 25oC, Unless Otherwise Specified
J
PARAMETERSYMBOLTEST CONDITIONSMINTYPMAXUNITS
Collector to Emitter Breakdown VoltageBV
Collector to Emitter Leakage CurrentI
2. Valuesfor two Turn-On loss conditions are shown fortheconvenienceof the circuit designer. E
is the turn-on loss of the IGBT only.E
ON1
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same TJas the IGBT. The diode type is specified in
Figure 24.
3. Turn-Off Energy Loss (E
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and
OFF
ending at the point where the collector current equals zero (ICE = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.