Intersil Corporation HFA3726 Datasheet

HFA3726
November 1999 File Number 4310.3Data Sheet
400MHz Quadrature IF Modulator/Demodulator
The HFA3726 is a highly integrated baseband converter for quadrature modulation applications. It features all the necessary functionality for
Ordering Information
TEMP.
PART NUMBER
HFA3726IN -40 to 85 80 Ld TQFP Q80.14x14 HFA3726IN96 -40 to 85 80 Ld TQFP Tape and Reel
RANGE (oC) PACKAGE PKG. NO.
Features
• Integrates all IF Transmit and Receive Functions
• Broad Frequency Range . . . . . . . . . . .10MHz to 400MHz
• 5th Order Low Pass Filter. . . . . . . . . . . . . . . . . . . .7.7MHz
• 400MHz Limiting IF Gain Strip with RSSI. . . . . . . . . .84dB
• Low LO Drive Level . . . . . . . . . . . . . . . . . . . . . . . -15dBm
• Fast Transmit-Receive Switching . . . . . . . . . . . . . . . . .1µs
• Power Management/Standby Mode
• Single Supply 2.7V to 5.5V Operation
Applications
• Systems Targeting IEEE 802.11 Standard
• TDD Quadrature-Modulated Communication Systems
• Wireless Local Area Networks
• PCMCIA Wireless Transceivers
• ISM Systems
• TDMA Packet Protocol Radios
• PCS/Wireless PBX
• Wireless Local Loop
Simplified Block Diagram
LIM1_IN
RSSI1 RSSI2
MOD_LO_IN
MOD_LO_OUT
LO_GND
MOD_TX_IF_OUT
2V
REF
LIM1_OUT
2V REF
LIM2_IN
IFIF
LIM2_OUT
MOD_IF_IN
÷ 2
0o/90
MOD_RX_I
MOD_RX_Q
M
o
U X
MOD_TX_I
MOD_TX_Q
LPF_RX_I
LPF_RX_Q
I
Q
LPF_TX_I
LPF_TX_Q
LPF_TUNE_1
LPF_TUNE_0
M U X
LPF_RXI_OUT
LPF_RXQ _OUT
LPF_TXI_IN
LPF_TXQ_IN
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143
PRISM® is a registered trademark of Intersil Corporation. PRISM logo is a trademark of Intersil Corporation.
| Copyright © Intersil Corporation 1999
Pinout
LIM1_RSSI
RSSI_RL1
GND
LIM1_OUT+
80 LEAD TQFP
LIM1_OUT-
LIM1_VCCLIM1_PE
HFA3726
TOP VIEW
GND
GND
GND
GND
GND
GND
GND
GND
GND
LIM2_BYP-
LIM2_IN-
LIM2_IN+
LIM2_BYP+
LIM1_BYP+
LIM1_IN+
LIM1_IN-
LIM1_BYP-
GND GND GND GND
LPF_V
CC
2V REF
LPF_BYP
LPF_TXI_IN
LPF_TXQ_IN
LPF_RXI_OUT
LPF_RXQ_OUT
GND
GND LPF_Tune1 LPF_Tune0
GND
80
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2122 23 242526 27 2829 30 313233 34 3536
GND
GND
LPF_TXI+
LPF_RXQ-
LPF_RXQ+
LPF_RXI-
LPF_RXI+
LPF_TXQ-
LPF_TXQ+
LPF_TX_PE
LPF_RX_PE
LPF_TXI-
MOD_RXI-
MOD_RXI+
MOD_RXQ-
MOD_RXQ+
64656667686970717273747576777879
6362 61
3738 39 40
MOD_TXI-
MOD_TXI+
MOD_TXQ+
LIM2_RSSI
60
RSSI_RL2
59
GND
58
LIM2_OUT+
57
LIM2_OUT-
56
LIM2_V
55 54
LIM2_PE
53
GND
52
GND
51
GND LO_GND
50 49
MOD_IF_IN-
48
MOD IF_IN+
47
MOD_V
46
MOD_LO_OUT
45
MOD_V
44
MOD_LO_IN MOD_RX_PE
43
MOD_TX_IF_OUT
42 41
MOD_TX_PE
MOD_TXQ-
CC
CC
CC
2
Block Diagram
HFA3726
LPF_TUNE0
LPF_TUNE1
LPF_RX PE
LPF_RX I -
LPF_RX I +
LPF_RX Q +
LPF_RX Q -
MOD_RX Q -
MOD_RX Q +
MOD_RX I -
MOD_RX I +
MOD_RX PE
MOD_IF_IN +
MOD_IF_IN -
LIM2_OUT -
LIM2_OUT +
LIM2_PE
LIM2_IN+ LIM2_IN-
LIM1_OUT -
LIM1_OUT +
LIM1_PE
DOWN CONV
IF
LPF_RXI_OUT
IF
LPF_RXQ_OUT
I
IF LIMITERS
MUX
MUX
LPF_TXI_IN
Q
o
90
/
o
0
LPF_TXQ_IN
MUX_LPF
LPF_TX_PE
LPF_TX_Q ­LPF_TX_Q +
LPF_TX_I ­LPF_TX_I +
MOD TX I + MOD TX I -
MOD TX Q + MOD TX Q -
MOD_TX_PE
÷2
2V REF
UP CONVERTER
2V
REF
LIM1_IN+
SAW
IF
LIM1_IN-
LIM1_RSSI
IN
NOTE: VCC, GND and Bypass capacitors not shown.
3
RSSI_RL1
RSSI_RL2
LIM2_RSSI
RSSI
LO_GND
(2XLO)
MOD_LO_IN
CC
V
50
MOD_LO_OUT
IF_OUT
MOD_TX
LPF_BYP
1.25V
HFA3726
Pin Description
PIN SYMBOL DESCRIPTION
1 LIM1_BYP+ DC feedback pin for Limiter amplifier 1. Requires good decoupling and minimum wire length to a solid signal
ground. 2 LIM1_In+ Non inverting analog input of Limiter amplifier 1. 3 LIM1_In- Inverting input of Limiter amplifier 1. 4 LIM1_BYP- DC feedback pin for Limiter amplifier 1. Requires good decoupling and minimum wire length to a solid signal
ground.
5, 6,
7, 8
9 LPF_V
10 2V REF Stable 2V reference voltage output for external applications. Loading must be higher than 10k. A bypass
11 LPF_BYP Internal reference bypass pin. This is the common voltage (VCM) used for the LPF digital thresholds. Requires
12 LPF_TXI_In Low pass filter in phase (I) channel transmit digital input. (Note 1) 13 LPF_TXQ_In Low pass filter quadrature (Q) channel transmit digital input. (Note 1) 14 LPF_RXI_Out Low pass filter in phase (I) channel receive output. Requires AC coupling. (Note 2) 15 LPF_RXQ_Out Low pass filter quadrature (Q) channel receive output. Requires AC coupling. (Note 2) 16 GND Ground. Connect to a solid ground plane. 17 GND Ground. Connect to a solid ground plane. 18 LPF_Tune1 These two pins are used to fine tune the Low pass filter cutoff frequency. A resistor connected between the two 19 LPF_Tune0
20 GND Ground. Connect to a solid ground plane. 21 LPF_RX_PE Digital input control pin to enable the LPF receive mode of operation. Enable logic level is High. 22 LPF_TX_PE Digital input control pin to enable the LPF transmit mode of operation. Enable logic level is High. 23 LPF_TXQ- Negativeoutput of the transmit Low pass filter,quadrature channel. AC coupling is required. Normally connects to
24 LPF_TXQ+ Positive output of the transmit Low pass filter, quadrature channel. AC coupling is required. Normally connects to
25 LPF_TXI- Negative output of the transmit Low pass filter, in phase channel. AC coupling is required. Normally connects to
26 LPF_TXI+ Positiveoutput of the transmit Low pass filter,in phase channel. AC coupling is required. Normally connects to the
27 LPF_RXQ- Low pass filter inverting input of the receive quadrature channel. AC coupling is required. This input is normally
28 LPF_RXQ+ Lowpass filter non invertinginput of thereceive quadrature channel.AC coupling isrequired. This inputis normally
29 LPF_RXI- Low pass filter inverting input of the receive in phase channel. AC coupling is required. This input is normally
30 LPF_RXI+ Low pass filter non inverting input of the receive in phase channel. AC coupling is required. This input is normally
31, 32 GND Ground. Connect to a solid ground plane.
33 Mod_RXI+ In phase demodulator positive output. AC coupling is required. Normally connects to the non inverting input of the
34 Mod_RXI- In phase demodulatornegative output. ACcoupling is required. Normally connects tothe inverting input of theLow
GND Ground. Connect to a solid ground plane.
CC
Supply pin for the Low pass filter. Use high quality decoupling capacitors right at the pin.
capacitor of at least 0.1µF is required.
0.1µF decoupling capacitor.
pins (R
specifications.
the inverting input of the quadrature Modulator (Mod_TXQ-), pin 40.
the non inverting input of the quadrature Modulator (Mod_TXQ+), pin 39.
the inverting input of the in phase Modulator (Mod_TXI-), pin 38.
non inverting input of the in phase Modulator (Mod_TXI+), pin 37.
coupled to the negative output of the quadrature demodulator (Mod_RXQ-), pin 36.
coupled to the positive output of the quadrature demodulator (Mod_RXQ+), pin 35.
coupled to the negative output of the in phase demodulator (Mod_RXI-), pin 34.
coupled to the positive output of the in phase demodulator (Mod_RXI-), pin 33.
Low pass filter (LPF_RXI+), pin 30.
pass filter (LPF_RXI-), pin 29.
) will fine tune both transmit and receive filters. Refer to the tuning equation in the LPF AC
TUNE
4
HFA3726
Pin Description (Continued)
PIN SYMBOL DESCRIPTION
35 Mod_RXQ+ Quadrature demodulator positive output. AC coupling is required. Normally connects to the non inverting input of
the Low pass filter (LPF_RXQ+), pin 28.
36 Mod_RXQ- Quadrature demodulator negative output. AC coupling is required. Normally connects to the inverting input of the
Low pass filter (LPF_RXQ+), pin 27.
37 Mod_TXI+ In phase modulator non inverting input. AC coupling is required. This input is normally coupled to the Low pass
filter positive output (LPF_TXI+), pin 26.
38 Mod_TXI- In phase modulator inverting input. AC coupling is required. This input is normally coupled to the Low pass filter
negative output (LPF_TXI-), pin 25.
39 Mod_TXQ+ Quadrature modulator non inverting input. AC coupling is required. This input is normally coupled to the Low pass
filter positive output (LPF_TXQ+), pin 24.
40 Mod_TXQ- Quadrature modulator inverting input. ACcoupling is required. This input is normally coupled to the Low pass filter
negative output (LPF_TXQ-), pin 23.
41 Mod_TX_PE Digital input control to enable the Modulator section. Enable logic level is High for transmit. 42 Mod_TX_IF_Out Modulator open collector output, single ended. Termination resistor to VCC with a typical value of 316Ω. 43 Mod_RX_PE Digital input control to enable the demodulator section. Enable logic level is High for receive. 44 Mod_LO_In
(2XLO)
45 Mod_V 46 Mod_LO_Out Divide by 2 buffered output reference from “Mod_LO_in” input. Used for external applications where the modulating
47 Mod_V 48 Mod_IF_In+ Demodulator non inverting input. Requires AC coupling. 49 Mod_IF In- Demodulator inverting input. Requires AC coupling. 50 LO_GND When grounded, this pin enables the LO buffer (Mod_LO_Out). When open (NC) it disables the LO buffer.
51, 52,
53 54 LIM2_PE Digital input control to enable the limiter amplifier 2. Enable logic level is High. 55 LIM2_V 56 LIM2_Out- Positive output of limiter amplifier 2. Requires AC coupling. 57 LIM2_Out+ Negative output of limiter amplifier 2. Requires AC coupling. 58 GND Ground. Connect to a solid ground plane. 59 RSSI_RL2 Load resistor to ground. Nominal value is 6k. This load is used to terminate the LIM RSSI current output and
60 LIM2_RSSI Current output of RSSI for the limiter amplifier 2. Connect in parallel with the RSSI output of the amplifier limiter 1
61 LIM2_BYP+ DC feedback pin for Limiter amplifier 2. Requires good decoupling and minimum wire length to a solid signal
62 LIM2_In+ Non inverting analog input of Limiter amplifier 2. 63 LIM2_In- Inverting input of Limiter amplifier 2. 64 LIM2_BYP- DC feedback pin for Limiter amplifier 2. Requires good decoupling and minimum wire length to a solid signal
CC
CC
GND Ground. Connect to a solid ground plane.
CC
Single ended local oscillator current input. Frequency of input signal must be twice the required modulator carrier
and demodulator LO frequency. Input current is optimum at 200µA
be designed for a wide range of power and impedances at this port. Typical input impedance is 130Ω. This pin
requires AC coupling. (Note 3)
NOTE: High second harmonic content input waveforms may degrade I/Q phase accuracy.
Modulator/Demodulator supply pin. Use high quality decoupling capacitors right at the pin.
and demodulating carrier reference frequency is required. 50single end driving capability.This output can be
disabled by use of pin 50. AC coupling is required, otherwise tie to VCC.
Modulator/Demodulator supply pin. Use high quality decoupling capacitors right at the pin.
Limiter amplifier 2 supply pin. Use high quality decoupling capacitors right at the pin.
maintain temperature and process variation to a minimum.
for cascaded response.
ground.
ground.
. Input matching networks and filters can
RMS
5
HFA3726
Pin Description (Continued)
PIN SYMBOL DESCRIPTION
65, 66, 67, 68, 69, 70, 71, 72,
73 74 LIM1_PE Digital input control to enable the limiter amplifier 1. Enable logic level is High. 75 LIM1_V 76 LIM1_Out- Negative output of limiter amplifier 1. Requires AC coupling. 77 LIM1_Out+ Positive output of limiter amplifier 1. Requires AC coupling. 78 GND Ground. Connect to a solid ground plane. 79 RSSI_RL1 Load resistor to ground. Nominal value is 6k. This load is used to terminate the LIM RSSI current output and
80 LIM1_RSSI Current output of RSSI for the limiter amplifier 1. Connect in parallel with the RSSI output of the amplifier limiter 2
NOTES:
1. The HFA3726 generates a lower side band signal when the “I” input leads the “Q” input by 90 degrees.
2. For a reference LO frequency higher than a CW IF signal input, the “I” channel leads the “Q” channel by 90 degrees.
3. The in-phase reference LO transitions occur at the rising edges of the 2XLO signal. Quadrature LO transitions occur at the falling edges. 180 degrees phase ambiguity is expected for carrier locked systems without differential encoding.
LIM1_PE 0 1 0 LIM2_PE 0 1 0 LPF_RX_PE 0 1 0 MOD_RX_PE 0 1 0 MOD_TX_PE 1 0 0 LPF_TX_PE 1 0 0
GND Ground. Connect to a solid ground plane.
CC
Limiter amplifier 1 supply pin. Use high quality decoupling capacitors right at the pin.
maintain temperature and process variation to a minimum.
for cascaded response.
TABLE 1. POWER MANAGEMENT
TRANSMIT RECEIVE POWER DOWN
6
HFA3726
Absolute Maximum Ratings Thermal Information
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.0V
Voltage on Any Other Pin. . . . . . . . . . . . . . . . . . -0.3V to VCC +0.3V
Operating Conditions
Supply Voltage Range. . . . . . . . . . . . . . . . . . . . . . . .+2.7V to +5.5V
Operating Temperature Range . . . . . . . . . . . . . . -40oC TA≤ 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
4. θJAis measured with the component mounted on an low effective thermal conductivity test board in free air. See Technical Brief 379 for details.
DC Electrical Specifications Full Power Supply Range, Unless Otherwise Specified
PARAMETER SYMBOL
Total Supply Current, RX Mode at 5.5V RXI Total Supply Current, TX Mode at 5.5V TXI Shutdown Current at 5.5V I All Digital Inputs VIH (TTL Threshold for All VCC)VIHA Full 2.0 - V All Digital Inputs VIL (TTL Threshold for All VCC)VILA Full -0.2 - 0.8 V High Level Input Current at 2.7V VCC, VIN = 2.4V ihi A 25 - - 80 µA High Level Input Current at 5.5V VCC, VIN = 4.0V ihh A 25 - - 400 µA Low Level Input Current, VIN = 0.8V Iil A 25 -20 - +20 µA RX to TX/TX to RX Switching Speed (See Figure 22) PEt B 25 - 2 - µs Power Down/Up Switching Speed (See Figure 22) PEtpd B 25 - 10 - µs Reference Voltage V Reference Voltage Variation Over Temperature V Reference Voltage Variation Over Supply Voltage V Reference Voltage Minimum Load Resistance V
NOTE:
5. A = Production Tested, B = Based on Characterization, C = By Design.
CC CC
CCOFF
REF
REFT
REFV
REFRL
Thermal Resistance (Typical, Note 4) θJA(oC/W)
Plastic TQFP Package. . . . . . . . . . . . . . . . . . . . . . . 75
Maximum Lead Temperature
(Soldering 10s at Lead Tips Only) . . . . . . . . . . . . . . . . . . . .300oC
Maximum Storage Temperature Range. . . . . . . -65oC TA≤ 150oC
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150oC
Package Power Dissipation at 70oC
Plastic TQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1W
(NOTE 5)
TEST
LEVEL
A Full - 70 105 mA A Full - 60 80 mA A Full - 0.8 2 mA
A Full 1.87 2.0 2.13 V B 25 - 800 - µV/oC B 25 - 1.6 - mV/V C2510- kΩ
TEMP
(oC) MIN TYP MAX UNITS
CC
V
AC Electrical Specifications, Demodulator Performance Application Targeting IEEE 802.11, V
Unless Otherwise Specified
(NOTE 6)
TEST
PARAMETER SYMBOL
IF Demodulator 3dB Limiting Sensitivity (Note 7) D3dB B 25 - -84 - dBm IF Demodulator I and Q Outputs Voltage Swing DIQsw A Full 300 450 650 mV IF Demodulator I and Q Channels Output Drive Capability
(Z
= 50) Cmax = 10pF
OUT
IF Demodulator I/Q Amplitude Balance, IFin = -70dBm at 50 Dabal A Full -1.0 0 +1.0 dB IF Demodulator I/Q Phase Balance, IFin = -70dBm at 50 Dphbal A Full -4.0 0 +4.0 Degrees IF Demodulator Output Variation at -70dBm to 0dBm Input Dovar A Full -0.5 0 +0.5 dB IF Demodulator RSSI Noise Induced Offset Voltage (Note 8) Drssio B 25 - 580 - mV
Doutz C 25 1.2 2 - k
LEVEL
TEMP
(oC) MIN TYP MAX UNITS
= 3V, Figure 22
CC
P-P
7
DC
Loading...
+ 14 hidden pages