Intersil Corporation HFA3724 Datasheet

HFA3724
Data Sheet November 1999 File Number 4067.7
400MHz Quadrature IF Modulator/Demodulator
The Intersil 2.4GHz PRISM™ chip set is a highly integrated five-chip solution for RF modems employing Direct Sequence Spread Spectrum (DSSS) signaling. The
The HF A3724 is a highly integr ated baseband con v erter for quadrature modulation applications. It features all the necessary blocks for baseband modulation and demodulation of I and Q signals. It has a two stage integrated limiting IF amplifier with 84db of gain with a built in Receive Signal Strength Indicator (RSSI). Baseband antialiasing and shaping filters are integrated in the design. Four filter bandwidths are programmable via a tw o bit digital control interface. In addition, these filters are continuously tunableovera±20%frequencyrangeviaoneexternalresistor .The modulator channel receives digital I and Q data for processing. To achieve broadband operation, the Local Oscillator frequency input is required to be twice the desired frequency of modulation/demodulation. A selectable buffered divide b y 2 LO output and a stable reference voltage are provided for convenience of the user. The de vice is housed in a thin 80 lead TQFP pac kage well suited for PCMCIA board applications.
Ordering Information
TEMP. RANGE
PART NUMBER
HFA3724IN -40 to 85 80 Ld TQFP Q80.14x14 HFA3724IN96 -40 to 85 Tape and Reel
(oC) PACKAGE PKG. NO.
Features
• Integrates all IF Transmit and Receive Functions
• Broad Frequency Range . . . . . . . . . . .10MHz to 400MHz
• I/Q Amplitude and Phase Balance . . . . . . . . . . . 0.2dB, 2
• 5th Order Programmable
Low Pass Filter. . . . . . . . . . . . . . . . . . .2.2MHz - 17.6MHz
• 400MHz Limiting IF Gain Strip with RSSI. . . . . . . . . .84dB
• Low LO Drive Level . . . . . . . . . . . . . . . . . . . . . . . -15dBm
• Fast Transmit-Receive Switching . . . . . . . . . . . . . . . . .1µs
• Power Management/Standby Mode
• Single Supply 2.7V to 5.5V Operation
Applications
• Systems Targeting IEEE 802.11 Standard
• TDD Quadrature-Modulated Communication Systems
• Wireless Local Area Networks
• PCMCIA Wireless Transceivers
• ISM Systems
• TDMA Packet Protocol Radios
• PCS/Wireless PBX
• Wireless Local Loop
o
Simplified Block Diagram
LIM1_IN
MOD_LO_IN
MOD_LO_OUT
LO_GND
MOD_TX_IF_OUT
1
RSSI1 RSSI2
LIM1_OUT
LIM2_IN
LIM2_OUT
MOD_IF_IN
IFIF
÷2
2V
REF
2V REF
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
PRISM® is a registered trademark of Intersil Corporation. PRISM logo is a trademark of Intersil Corporation.
MOD_RX_I
MOD_RX_Q
LPF_RX_Q
M
o
0o/90
U X
LPF_TX_I
MOD_TX_I
MOD_TX_Q
1-888-INTERSIL or 321-724-7143
LPF_RX_I
I
Q
LPF_TX_Q
LPF_TUNE_1
LPF_SEL0
LPF_SEL1
LPF_TUNE_0
M U X
LPF_RXI_OUT
LPF_RXQ _OUT
LPF_TXI_IN
LPF_TXQ_IN
| Copyright © Intersil Corporation 1999
Pinout
LIM1_RSSI
RSSI_RL1
GND
LIM1_OUT+
80 LEAD TQFP
LIM1_OUT-
LIM1_VCCLIM1_PE
HFA3724
TOP VIEW
GND
GND
GND
GND
GND
GND
GND
GND
GND
LIM2_BYP-
LIM2_IN-
LIM2_IN+
LIM2_BYP+
LIM1_BYP+
LIM1_IN+
LIM1_IN-
LIM1_BYP-
GND GND GND
GND
LPF_V
CC
2V REF
LPF_BYP
LPF_TXI_IN
LPF_TXQ_IN
LPF_RXI_OUT
LPF_RXQ_OUT
LPF_SEL1
LPF_SEL0 LPF_TUNE1 LPF_TUNE0
GND
80
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2122 23 24 2526 27 28 2930 31 32 3334 35 36
GND
GND
LPF_TXI+
LPF_RXQ-
LPF_RXQ+
LPF_RXI-
LPF_RXI+
LPF_TXQ-
LPF_TXQ+
LPF_TX_PE
LPF_RX_PE
LPF_TXI-
MOD_RXI-
MOD_RXI+
MOD_RXQ-
MOD_RXQ+
64656667686970717273747576777879
6362 61
3738 39 40
MOD_TXI-
MOD_TXI+
MOD_TXQ+
LIM2_RSSI
60
RSSI_RL2
59
GND
58
LIM2_OUT+
57
LIM2_OUT-
56
LIM2_V
55 54
LIM2_PE
53
GND
52
GND
51
GND LO_GND
50 49
MOD_IF_IN-
48
MOD IF_IN+
47
MOD_V
46
MOD_LO_OUT
45
MOD_V
44
MOD_LO_IN MOD_RX_PE
43
MOD_TX_IF_OUT
42 41
MOD_TX_PE
MOD_TXQ-
CC
CC
CC
2
Block Diagram
HFA3724
LPF_TUNE0
LPF_TUNE1
LPF_RX PE
LPF_RX I -
LPF_RX I +
LPF_RX Q +
LPF_RX Q -
MOD_RX Q -
MOD_RX Q +
MOD_RX I -
MOD_RX I +
MOD_RX PE
MOD_IF_IN +
MOD_IF_IN -
LIM2_OUT -
LIM2_OUT +
LIM2_PE
LIM2_IN+
LIM2_IN-
LIM1_OUT -
LIM1_OUT +
LIM1_PE
LPF_SEL1 LPF_SEL0
DOWN CONV
LPF_RXI_OUT
IF
IF
LPF_RXQ_OUT
I
IF LIMITERS
MUX
MUX
o
/90
o
0
÷2
LPF_TXI_IN
Q
UP CONVERTER
LPF_TXQ_IN
2V
REF
MUX_LPF
LPF_TX_PE
LPF_TX_Q ­LPF_TX_Q +
LPF_TX_I ­LPF_TX_I +
MOD TX I + MOD TX I -
MOD TX Q + MOD TX Q -
MOD_TX_PE
2V REF
LIM1_IN+
SAW
IF
LIM1_IN-
LIM1_RSSI
IN
NOTE: VCC, GND and Bypass capacitors not shown.
3
RSSI_RL1
RSSI_RL2
LIM2_RSSI
RSSI
LO_GND
(2XLO)
MOD_LO_IN
CC
V
50
MOD_LO_OUT
IF_OUT
MOD_TX
LPF_BYP
1.25V
Typical Application Diagram
HFA3724
HFA3724
(FILE# 4067)
HF A3424 (NOTE)
(FILE# 4131)
HF A3624
RF/IF
CONVERTER
(FILE# 4066)
RFPA
HF A3925
VCO
VCO
(FILE# 4132)
DUAL SYNTHESIZER
HFA3524
(FILE# 4062)
TYPICAL TRANSCEIVER APPLICATION USING THE HFA3724
NOTE: Required for systems targeting 802.11 specifications.
For additional information on the PRISM™ chip set, call (407) 724-7800 to access Intersil’ AnswerFAX system. When prompted, key in the four-digit document number (File #) of the datasheets you wish to receive.
÷2
0o/90
QUAD IF MODULATOR
TUNE/SELECT
I
M
o
U
X
Q
HSP3824
(FILE# 4064)
RXI
RXQ
RSSI
M U X
A/D
DE-
SPREAD
A/D
CCA
A/D
TXI
SPREAD
TXQ
DSSS BASEBAND PROCESSOR
PRISM™ CHIP SET FILE #4063
DPSK
DEMOD
802.11
MAC-PHY
INTERFACE
DPSK
MOD.
DATA TO MACCTRL
The four-digit file numbers are shown in Typical Application Diagram, and correspond to the appropriate circuit.
4
HFA3724
Typical Application Diagram (Targeting IEEE 802.11 Standard)
RF/IFIF/RF
HFA3624IA
CONVERTER
TOYOCOM
TQS 432
(NOTE 1)
100p
56n
0.1
V
0.1
2
260
3
1
100p
100p
TOYOCOM
TQS 432
CC
75
4
100p
V
CC
1K
47
(NOTE 4)
NC
V
316
42
50
CC
0.1
45
48
49
44
46
43
47
0.01
34
0.01
0.01
36
0.01
(NOTE 5)
0.01
38
0.01
0.01
40
0.01
V
(NOTE 2)
PE
74
77
76
80
79
VCO
100p
100p
47p
8 TO 40p
100p
10nH
560
0.1
100p
CC
0.1 55
62 63
64
61
100p
100p
LO_IN
(NOTE 6)
TX_IF_OUT
560MHz VCO (AUXILIARY)
59
PE
54
57
56
60
100p
0.1
47nH
100p
100p
100p
47p
(NOTE 3)
47p 220
56
900
V
CC
0.1
9
3033 29
2835 27
18
19
2637 25
2439 23
RXI_OUT
14
RXQ_OUT
15 20
16
17
10 2V REF
12
680
11 680
13
212241
0.01
0.01
LPF_SEL1
V
CC
LPF_SEL0
0.1
TXI
4.3K
0.1
TXQ
4.3K
RSSI
HSP3824VI
BASEBAND PROCESSOR
DUAL SYNTHESIZER
HFA3524IA
MOD_TX_PE
MOD_RX_PE
LPF_TX_PE
LPF_RX_PE
TYPICAL APPLICATION DIAGRAM (TARGETING IEEE 802.11 STANDARD)
NOTES:
1. Input termination used to match a SAW filter.
2. Typical bandpass filter for 280MHz, BW = 47MHz, Q = 6. Can also be used if desired after the second stage.
3. Network shown for a typical -10dBm input at 50.
4. Output termination used to match a SAW filter.
5. R
value for a 7.7MHz cutoff frequency setting.
TUNE
6. LO buffer output termination is needed only when the buffer is enabled by pin 50 connected to GND, otherwise tie pin 46 to pin 47.
5
HFA3724
Pin Description
PIN SYMBOL DESCRIPTION
1 LIM1_BYP+ DC feedback pin for Limiter amplifier 1. Requires good decoupling and minimum wire length to a solid signal
ground. 2 LIM1_In+ Non inverting analog input of Limiter amplifier 1. 3 LIM1_In- Inverting input of Limiter amplifier 1. 4 LIM1_BYP- DC feedback pin for Limiter amplifier 1. Requires good decoupling and minimum wire length to a solid signal
ground.
5, 6,
7, 8
9 LPF_V
10 2V REF Stable 2V reference voltage output for external applications. Loading must be higher than 10k. A bypass
11 LPF_BYP Internal reference bypass pin. This is the common voltage (VCM) used for the LPF digital thresholds. Requires
12 LPF_TXI_In Low pass filter in phase (I) channel transmit input. Conventionalor attenuated direct coupling is required for digital
13 LPF_TXQ_In Low pass filter quadrature (Q) channel transmit input. Conventional or attenuated direct coupling is required for
14 LPF_RXI_Out Low pass filter in phase (I) channel receive output. Requires AC coupling. (Note 8) 15 LPF_RXQ_Out Low pass filter quadrature (Q) channel receive output. Requires AC coupling. (Note 8) 16 LPF_Sel1 Digitalcontrol input pins. Selects fourprogramed cut off frequencies for both receive and transmit channels. Tuning 17 LPF_Sel0
18 LPF_Tune1 These two pins are used to fine tune the Low pass filter cutoff frequency. A resistor connected between the two 19 LPF_Tune0
20 GND Ground. Connect to a solid ground plane. 21 LPF_RX_PE Digital input control pin to enable the LPF receive mode of operation. Enable logic level is High. 22 LPF_TX_PE Digital input control pin to enable the LPF transmit mode of operation. Enable logic level is High. 23 LPF_TXQ- Negativeoutput of the transmit Low pass filter, quadrature channel. AC coupling is required. Normally connects to
24 LPF_TXQ+ Positive output of the transmit Low pass filter, quadrature channel. AC coupling is required. Normally connects to
25 LPF_TXI- Negative output of the transmit Low pass filter, in phase channel. AC coupling is required. Normally connects to
26 LPF_TXI+ Positiveoutput of the transmit Low pass filter,in phase channel. AC coupling is required. Normally connects to the
27 LPF_RXQ- Low pass filter inverting input of the receive quadrature channel. AC coupling is required. This input is normally
28 LPF_RXQ+ Lowpass filternon inverting input of the receive quadrature channel. ACcoupling is required. Thisinput is normally
29 LPF_RXI- Low pass filter inverting input of the receive in phase channel. AC coupling is required. This input is normally
30 LPF_RXI+ Low pass filter non inverting input of the receive in phase channel. AC coupling is required. This input is normally
31, 32 GND Ground. Connect to a solid ground plane.
GND Ground. Connect to a solid ground plane.
CC
Supply pin for the Low pass filter. Use high quality decoupling capacitors right at the pin.
capacitor of at least 0.1µF is required.
0.1µF decoupling capacitor.
inputs. (Note 7)
digital inputs. (Note 7)
speed from one cutoff to another is less than 1µs.
SEL1 SEL0 Cutoff Frequency SEL1 SEL0 Cutoff Frequency
LO LO 2.2MHz HI LO 8.8MHz
LO HI 4.4MHz HI HI 17.6MHz
pins (R
specifications.
the inverting input of the quadrature Modulator (Mod_TXQ-), pin 40.
the non inverting input of the quadrature Modulator (Mod_TXQ+), pin 39.
the inverting input of the in phase Modulator (Mod_TXI-), pin 38.
non inverting input of the in phase Modulator (Mod_TXI+), pin 37.
coupled to the negative output of the quadrature demodulator (Mod_RXQ-), pin 36.
coupled to the positive output of the quadrature demodulator (Mod_RXQ+), pin 35.
coupled to the negative output of the in phase demodulator (Mod_RXI-), pin 34.
coupled to the positive output of the in phase demodulator (Mod_RXI-), pin 33.
) will fine tune both transmit and receive filters. Refer to the tuning equation in the LPF AC
TUNE
6
HFA3724
Pin Description (Continued)
PIN SYMBOL DESCRIPTION
33 Mod_RXI+ In phase demodulator positive output. AC coupling is required. Normally connects to the non inverting input of the
Low pass filter (LPF_RXI+), pin 30.
34 Mod_RXI- In phase demodulator negativeoutput. AC coupling is required. Normally connects to the inverting input of the Low
pass filter (LPF_RXI-), pin 29.
35 Mod_RXQ+ Quadrature demodulator positive output. AC coupling is required. Normally connects to the non inverting input of
the Low pass filter (LPF_RXQ+), pin 28.
36 Mod_RXQ- Quadrature demodulator negative output. AC coupling is required. Normally connects to the inverting input of the
Low pass filter (LPF_RXQ+), pin 27.
37 Mod_TXI+ In phase modulator non inverting input. AC coupling is required. This input is normally coupled to the Low pass
filter positive output (LPF_TXI+), pin 26.
38 Mod_TXI- In phase modulator inverting input. AC coupling is required. This input is normally coupled to the Low pass filter
negative output (LPF_TXI-), pin 25.
39 Mod_TXQ+ Quadraturemodulator non inverting input. AC coupling is required. This input is normally coupled to the Low pass
filter positive output (LPF_TXQ+), pin 24.
40 Mod_TXQ- Quadrature modulator inverting input. AC coupling is required. This input is normally coupled to the Low pass filter
negative output (LPF_TXQ-), pin 23.
41 Mod_TX_PE Digital input control to enable the Modulator section. Enable logic level is High for transmit. 42 Mod_TX_IF_Out Modulator open collector output, single ended. Termination resistor to VCC with a typical value of 316Ω. 43 Mod_RX_PE Digital input control to enable the demodulator section. Enable logic level is High for receive. 44 Mod_LO_In
(2XLO)
45 Mod_V 46 Mod_LO_Out Divide by 2 buffered output reference from “Mod_LO_in” input. Used for external applications where the modulating
47 Mod_V 48 Mod_IF_In+ Demodulator non inverting input. Requires AC coupling. 49 Mod_IF In- Demodulator inverting input. Requires AC coupling. 50 LO_GND When grounded, this pin enables the LO buffer (Mod_LO_Out). When open (NC) it disables the LO buffer.
51, 52,
53 54 LIM2_PE Digital input control to enable the limiter amplifier 2. Enable logic level is High. 55 LIM2_V 56 LIM2_Out- Positive output of limiter amplifier 2. Requires AC coupling. 57 LIM2_Out+ Negative output of limiter amplifier 2. Requires AC coupling. 58 GND Ground. Connect to a solid ground plane. 59 RSSI_RL2 Load resistor to ground. Nominal value is 6kΩ. This load is used to terminate the LIM RSSI current output and
60 LIM2_RSSI Current output of RSSI for the limiter amplifier 2. Connect in parallel with the RSSI output of the amplifier limiter 1
61 LIM2_BYP+ DC feedback pin for Limiter amplifier 2. Requires good decoupling and minimum wire length to a solid signal
62 LIM2_In+ Non inverting analog input of Limiter amplifier 2.
CC
CC
GND Ground. Connect to a solid ground plane.
CC
Single ended local oscillator current input. Frequency of input signal must be twice the required modulator carrier
and demodulator LO frequency. Input current is optimum at 200µA
be designed for a wide range of power and impedances at this port. Typical input impedance is 130Ω.This pin
requires AC coupling. (Note 9)
NOTE: High second harmonic content input waveforms may degrade I/Q phase accuracy.
Modulator/Demodulator supply pin. Use high quality decoupling capacitors right at the pin.
and demodulating carrier reference frequency is required. 50single end driving capability.This output can be
disabled by use of pin 50. AC coupling is required, otherwise tie to pin 47 (VCC).
Modulator/Demodulator supply pin. Use high quality decoupling capacitors right at the pin.
Limiter amplifier 2 supply pin. Use high quality decoupling capacitors right at the pin.
maintain temperature and process variation to a minimum.
for cascaded response.
ground.
. Input matching networks and filters can
RMS
7
HFA3724
Pin Description (Continued)
PIN SYMBOL DESCRIPTION
63 LIM2_In- Inverting input of Limiter amplifier 2. 64 LIM2_BYP- DC feedback pin for Limiter amplifier 2. Requires good decoupling and minimum wire length to a solid signal
ground.
65, 66, 67, 68, 69, 70, 71, 72,
73 74 LIM1_PE Digital input control to enable the limiter amplifier 1. Enable logic level is High. 75 LIM1_V 76 LIM1_Out- Negative output of limiter amplifier 1. Requires AC coupling. 77 LIM1_Out+ Positive output of limiter amplifier 1. Requires AC coupling. 78 GND Ground. Connect to a solid ground plane. 79 RSSI_RL1 Load resistor to ground. Nominal value is 6kΩ. This load is used to terminate the LIM RSSI current output and
80 LIM1_RSSI Current output of RSSI for the limiter amplifier 1. Connect in parallel with the RSSI output of the amplifier limiter 2
NOTES:
7. The HFA3724 generates a lower sideband signal when the “I” input leads the “Q” input by 90 degrees.
8. For a reference LO frequency higher than a CW IF signal input, the “I” channel leads the “Q” channel by 90 degrees.
9. The in-phase reference LO transitions occur at the rising edges of the 2XLO clock signal. Quadrature LO transitions occur at the falling edges. 180 degrees phase ambiguity is expected for carrier locked systems without differential encoding.
GND Ground. Connect to a solid ground plane.
CC
Limiter amplifier 1 supply pin. Use high quality decoupling capacitors right at the pin.
maintain temperature and process variation to a minimum.
for cascaded response.
TABLE 1. POWER MANAGEMENT
TRANSMIT RECEIVE POWER DOWN
LIM1_PE 0 1 0 LIM2_PE 0 1 0 LPF_RX_PE 0 1 0 MOD_RX_PE 0 1 0 MOD_TX_PE 1 0 0 LPF_TX_PE 1 0 0
8
Loading...
+ 16 hidden pages