Intersil Corporation HFA1105 Datasheet

HFA1105
September 1998 File Number 3395.6
330MHz, Low Power, Current Feedback Video Operational Amplifier
The HFA1105 is a high speed, low power current feedback amplifier built with Intersil’s proprietary complementary bipolar UHF-1 process.
This amplifier features an excellent combination of low power dissipation (58mW) and high performance. The slew rate, bandwidth, and low output impedance (0.08) make this amplifier a good choice for driving Flash ADCs. Component and composite video systems also benefit from this op amp’s excellent gain flatness, and good differential gain and phase specifications. The HFA1105 is ideal for interfacing to Intersil’s line of video crosspoint switches (HA4201, HA4600, HA4314, HA4404, HA4344), to create high performance, low power switchers and routers.
The HFA1105 is a low power, high performance upgrade for the CLC406. For a comparable amplifier with output disable or output limiting functions, please see the data sheets for the HFA1145 and HFA1135 respectively.
For Military grade product, please refer to the HFA1145/883 data sheet.
Ordering Information
PART NUMBER
(BRAND)
HFA1105IP -40 to 85 8 Ld PDIP E8.3 HFA1105IB
(H1105I) HFA11XXEVAL DIP Evaluation Board for High Speed
TEMP.
RANGE (oC) PACKAGE PKG. NO.
-40 to 85 8 Ld SOIC M8.15
Op Amps
Features
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 5.8mA
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 1M
• Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . . . . . . 330MHz
• Very Fast Slew Rate. . . . . . . . . . . . . . . . . . . . . . 1000V/µs
• Gain Flatness (to 75MHz) . . . . . . . . . . . . . . . . . . . . 0.1dB
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02%
• Differential Phase. . . . . . . . . . . . . . . . . . . . 0.03 Degrees
• Pin Compatible Upgrade for CLC406
Applications
• Flash A/D Drivers
• Video Switching and Routing
• Professional Video Processing
• Video Digitizing Boards/Systems
• Multimedia Systems
• RGB Preamps
• Medical Imaging
• Hand Held and Miniaturized RF Equipment
• Battery Powered Communications
Pinout
HFA1105
(PDIP, SOIC)
TOP VIEW
NC
-IN
+IN
1 2
-
+
3 4
V-
8
NC
7
V+
6
OUT
5
NC
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
HFA1105
Absolute Maximum Ratings Thermal Information
Supply Voltage (V+ to V-). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V
Output Current (Note 1). . . . . . . . . . . . . . . . .Short Circuit Protected
30mA Continuous
60mA 50% Duty Cycle
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >600V
SUPPLY
Operating Conditions
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output current must not exceed 30mA for maximum reliability.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Thermal Resistance (Typical, Note 2) θJA (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Maximum Junction Temperature (Die) . . . . . . . . . . . . . . . . . . . .175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Electrical Specifications V
PARAMETER TEST CONDITIONS
INPUT CHARACTERISTICS
Input Offset Voltage A 25 - 2 5 mV
Average Input Offset Voltage Drift B Full - 1 10 µV/oC Input Offset Voltage
Common-Mode Rejection Ratio
Input Offset Voltage Power Supply Rejection Ratio
Non-Inverting Input Bias Current A 25 - 6 15 µA
Non-Inverting Input Bias Current Drift B Full - 5 60 nA/oC Non-Inverting Input Bias Current
Power Supply Sensitivity
Non-Inverting Input Resistance VCM = ±1.8V A 25 0.8 1.2 - M
Inverting Input Bias Current A 25 - 2 7.5 µA
Inverting Input Bias Current Drift B Full - 60 200 nA/oC Inverting Input Bias Current
Common-Mode Sensitivity
Inverting Input Bias Current Power Supply Sensitivity
= ±5V, AV = +1, RF = 510, RL = 100Ω, Unless Otherwise Specified
SUPPLY
(NOTE 3)
TEST
LEVEL
A Full - 3 8 mV
VCM = ±1.8V A 25 47 50 - dB ∆VCM = ±1.8V A 85 45 48 - dB ∆VCM = ±1.2V A -40 45 48 - dB ∆VPS = ±1.8V A 25 50 54 - dB ∆VPS = ±1.8V A 85 47 50 - dB ∆VPS = ±1.2V A -40 47 50 - dB
A Full - 10 25 µA
VPS = ±1.8V A 25 - 0.5 1 µA/V ∆VPS = ±1.8V A 85 - 0.8 3 µA/V ∆VPS = ±1.2V A -40 - 0.8 3 µA/V
VCM = ±1.8V A 85 0.5 0.8 - MΩ ∆VCM = ±1.2V A -40 0.5 0.8 - MΩ
A Full - 5 15 µA
VCM = ±1.8V A 25 - 3 6 µA/V ∆VCM = ±1.8V A 85 - 4 8 µA/V ∆VCM = ±1.2V A -40 - 4 8 µA/V ∆VPS = ±1.8V A 25 - 2 5 µA/V ∆VPS = ±1.8V A 85 - 4 8 µA/V ∆VPS = ±1.2V A -40 - 4 8 µA/V
TEMP.
(oC) MIN TYP MAX UNITS
2
HFA1105
Electrical Specifications V
PARAMETER TEST CONDITIONS
= ±5V, AV = +1, RF = 510, RL = 100Ω, Unless Otherwise Specified (Continued)
SUPPLY
(NOTE 3)
TEST
LEVEL
TEMP.
(oC) MIN TYP MAX UNITS
Inverting Input Resistance C 25 - 60 - Input Capacitance C 25 - 1.6 - pF Input Voltage Common Mode Range
(Implied by VIO CMRR, +RIN, and -I
CMS Tests)
BIAS
A 25, 85 ±1.8 ±2.4 - V
A -40 ±1.2 ±1.7 - V Input Noise Voltage Density (Note 6) f = 100kHz B 25 - 3.5 - nV/Hz Non-Inverting Input Noise Current Density (Note 6) f = 100kHz B 25 - 2.5 - pA/Hz Inverting Input Noise Current Density (Note 6) f = 100kHz B 25 - 20 - pA/Hz
TRANSFER CHARACTERISTICS
Open Loop Transimpedance Gain AV = -1 C 25 - 500 - k AC CHARACTERISTICS RF = 510, Unless Otherwise Specified
-3dB Bandwidth (V
= 0.2V
OUT
P-P
, Note 6)
AV = +1, +RS = 510 B 25 - 270 - MHz
B Full - 240 - MHz
AV = -1, RF = 425 B 25 - 300 - MHz AV = +2 B 25 - 330 - MHz
B Full - 260 - MHz
AV = +10, RF = 180 B 25 - 130 - MHz
B Full - 90 - MHz Full Power Bandwidth
(V 4V
OUT
P-P
= 5V
at AV = +2/-1,
P-P
at AV = +1, Note 6)
Gain Flatness (AV = +2, V
OUT
= 0.2V
P-P
, Note 6)
AV = +1, +RS = 510 B 25 - 135 - MHz AV = -1 B 25 - 140 - MHz AV = +2 B 25 - 115 - MHz To 25MHz B 25 - ±0.03 - dB
B Full - ±0.04 - dB
To 75MHz B 25 - ±0.11 - dB
B Full - ±0.22 - dB Gain Flatness
(AV = +1, +RS = 510, V
OUT
= 0.2V
P-P
, Note 6)
To 25MHz B 25 - ±0.03 - dB
To 75MHz B 25 - ±0.09 - dB Minimum Stable gain A Full - 1 - V/V OUTPUT CHARACTERISTICS AV = +2, RF = 510Ω, Unless Otherwise Specified Output Voltage Swing (Note 6) AV = -1, RL = 100 A25±3 ±3.4 - V
A Full ±2.8 ±3- V
Output Current (Note 6) AV = -1, RL = 50 A 25, 85 50 60 - mA
A -40 28 42 - mA Output Short Circuit Current B 25 - 90 - mA Closed Loop Output Impedance (Note 6) DC B 25 - 0.08 - Second Harmonic Distortion
(V
OUT
= 2V
P-P
, Note 6)
Third Harmonic Distortion (V
OUT
= 2V
P-P
, Note 6)
10MHz B 25 - -48 - dBc 20MHz B 25 - -44 - dBc 10MHz B 25 - -50 - dBc
20MHz B 25 - -45 - dBc Reverse Isolation (S12, Note 6) 30MHz B 25 - -55 - dB TRANSIENT CHARACTERISTICS AV = +2, RF = 510, Unless Otherwise Specified Rise and Fall Times V
OUT
= 0.5V
P-P
B 25 - 1.1 - ns B Full - 1.4 - ns
3
HFA1105
Electrical Specifications V
PARAMETER TEST CONDITIONS
Overshoot (Note 4) (V
= 0 to 0.5V, VIN t
OUT
Overshoot (Note 4) (V
= 0.5V
OUT
Slew Rate (V
= 4V
OUT
Slew Rate (V
= 5V
OUT
Slew Rate (V
= 5V
OUT
Settling Time (V
= +2V to 0V step, Note 6)
OUT
Overdrive Recovery Time VIN = ±2V B 25 - 8.5 - ns VIDEO CHARACTERISTICS AV = +2, RF = 510Ω, Unless Otherwise Specified Differential Gain
(f = 3.58MHz) Differential Phase
(f = 3.58MHz)
POWER SUPPLY CHARACTERISTICS
Power Supply Range C 25 ±4.5 - ±5.5 V Power Supply Current (Note 6) A 25 - 5.8 6.1 mA
NOTES:
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
4. Undershoot dominates for output signal swings below GND (e.g., 0.5V condition. See the “Application Information” section for details.
5. Slew rates are asymmetrical if the output swings belowGND(e.g.abipolarsignal). Positive unipolar output signals have symmetric positive and negative slew rates comparable to the +SR specification. See the “Application Information” section, and the pulse response graphs for details.
6. See Typical Performance Curves for more information.
, VIN t
P-P
, AV = +1, +RS = 510)
P-P
, AV = +2)
P-P
, AV = -1)
P-P
RISE
RISE
= 1ns)
= 1ns)
= ±5V, AV = +1, RF = 510, RL = 100Ω, Unless Otherwise Specified (Continued)
SUPPLY
(NOTE 3)
TEST
LEVEL
+OS B 25 - 3 - %
-OS B 25 - 5 - % +OS B 25 - 3 - %
-OS B 25 - 11 - % +SR B 25 - 1000 - V/µs
B Full - 975 - V/µs
-SR (Note 5) B 25 - 650 - V/µs B Full - 580 - V/µs
+SR B 25 - 1400 - V/µs
B Full - 1200 - V/µs
-SR (Note 5) B 25 - 800 - V/µs B Full - 700 - V/µs
+SR B 25 - 2100 - V/µs
B Full - 1900 - V/µs
-SR (Note 5) B 25 - 1000 - V/µs B Full - 900 - V/µs
To 0.1% B 25 - 15 - ns To 0.05% B 25 - 23 - ns To 0.02% B 25 - 30 - ns
RL = 150 B 25 - 0.02 - % RL = 75 B 25 - 0.03 - % RL = 150 B 25 - 0.03 - Degrees RL = 75 B 25 - 0.05 - Degrees
A Full - 5.9 6.3 mA
), yielding a higher overshoot limit compared to the V
P-P
TEMP.
(oC) MIN TYP MAX UNITS
OUT
= 0 to 0.5V
Application Information
Optimum Feedback Resistor
Although a current feedback amplifier’s bandwidth dependency on closed loop gain isn’t as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback
4
amplifier’s unique relationship between bandwidth and R
.
F
All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R
, in conjunction with
F
the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier’s bandwidth is inversely proportional to R optimized for R
= 510 at a gain of +2. Decreasing R
F
. The HFA1105 design is
F
F
decreases stability, resulting in excessive peaking and
Loading...
+ 7 hidden pages