Intersil Corporation HA457 Datasheet

HA457
Data Sheet August 1999
95MHz, Low Power, AV = 2, 8 x 8 Video Crosspoint Switch
The HA457 is an 8 x 8 video crosspoint switch suitable for high performance video systems. Its high level of integration significantly reduces component count, board space, and cost. The crosspoint switch contains a digitally controlled matrix of 64 fully buffered switches that connect eight video input signalsto any, or all, matrix outputs. Each matrix output connects to an internal, high-speed (275V/µs), gain of two buffer capable of driving 150 to ±2.5V.
The HA457 will directly drive a double terminated video cable with some degradation of differential gain and phase. Applications demanding the best composite video performance should drive the cable with a unity gain video buffer, such as the HFA1412 quad buffer (see Figure 7).
This crosspoint’s three-state output capability makes it feasible to parallel multiple HA457s and form larger switch matrices.
File Number 4231.2
Features
• Pin Compatible, Cable Driving Upgrade for HA456 and MAX456
• Fully Buffered Inputs and Outputs (A
= +2)
V
• Routes Any Input Channel to Any Output Channel
• Switches Standard and High Resolution Video Signals
• Serial or Parallel Digital Interface
• Expandable for Larger Switch Matrices
• Wide Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 95MHz
• High Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . 275V/µs
• Low Crosstalk at 10MHz . . . . . . . . . . . . . . . . . . . . -55dB
Applications
• Video Switching and Routing
• Security and Video Editing Systems
Ordering Information
TEMP.
PART NUMBER
HA457CN 0 to 70 44 Ld MQFP Q44.10x10 HA457CM 0 to 70 44 Ld PLCC N44.65
RANGE (oC) PACKAGE PKG. NO.
Pinouts
DGND
DGND
EDGE/
LEVEL
A0
IN1
NC
IN2
NC
IN3
IN4
IN5
HA457 (MQFP)
TOP VIEW
IN0A1A2
44 43 42 41 40
1
2 3 4 5 6 7 8 9
10 11
12 13 14 15 16 17
V+
IN6
D0/SER IN
IN7
PAR SER/
D1/SER OUT
NCV+OUT0D2OUT1
39 38 37 36 35 34
V-
NC
WR
CE
LATCH
CE
2221201918
D3
33 32 31 30 29
28 27 26 25 24 23
OUT7
OUT2 V-
OUT3 AGND OUT4
NC AGND OUT5
AGND OUT6 V+
EDGE/
A0
IN1
NC
IN2
DGND
NC
IN3
DGND
IN4
LEVEL
IN5
HA457 (PLCC)
IN0A1A2
7 8
9 10 11 12 13 14 15 16 17
V+
IN6
TOP VIEW
D0/SER IN
D1/SER OUT
123456
V-
IN7
PAR SER/
NCV+OUT0D2OUT1
44 43 42 41 40
NC
WR
262524232221201918
LATCH
CE
D3
2827
CE
39 38 37
36 35 34 33 32 31 30 29
OUT7
OUT2 V­OUT3
AGND OUT4 NC
AGND OUT5 AGND
OUT6 V+
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143
| Copyright © Intersil Corporation 1999
Functional Block Diagram
IN0 IN2 IN3 IN4 IN5 IN6 IN7IN1
HA457
OUTPUT
BUFFERS
= 2)
(A
V
HA457
8 x 8
SWITCH
MATRIX
SLAVE REGISTER
EN0:7
EN7
-
+
EN0
-
+
LATCH EDGE/
LEVEL
OUT0
OUT7
SER/PAR
D0/SER IN
MASTER REGISTER
A0 A1 A2 D2 D3
2
WR CE
CE
D1/SER OUT
HA457
Pin Descriptions
PIN
NAME FUNCTIONMQFP PLCC
3, 6, 17, 28, 39 1, 9, 12, 23, 34 NC No connect. Not internally connected.
40 2 D1/ SER OUT Parallel Data Bit input D1 for parallel programming mode. Serial Data Output (MSB of shift
register) for cascading multiple HA457s in serial programming mode. Simply connect Serial Data Out of one HA457 to Serial Data In of another HA457 to daisy chain multiple devices.
41 3 D0/SER IN Parallel Data Bit input D0 for parallel programming mode. Serial Data Input (input to shift
register) for serial programming mode.
42, 43, 1 4, 5, 7 A2, A1, A0 OutputChannelAddressBits.These inputs select the output being programmed in parallel
programming mode.
44, 2, 4, 7, 9, 11,
13, 15
5, 8 11, 14 DGND Digital Ground. Connect both DGND pins to AGND.
10 16 EDGE/LEVEL A user strapped input that defines whether synchronous channel switching is edge or level
12, 23, 38 18, 29, 44 V+ Positive supply voltage. Connect all V+ pins together and decouple each pin to AGND
14 20 SER/PAR A user strapped input that defines whether the serial (SER/PAR=1) or parallel
16, 32 22, 38 V- Negative supply voltage. Connect both V- pins together and decouple each pin to AGND
18 24 WR WRITE Input. In serial mode, data shifts into the shift register (Master Register) LSB from
19 25 LATCH Synchronous channel switch control input. If EDGE/LEVEL = 1, data is loaded from the
6, 8, 10, 13,
15, 17, 19, 21
IN0-IN7 Analog Video Input Lines.
controlled. With this pin strapped high, the slave register loads from the master register (thus changing the switch matrix state) on the rising edge of the LATCH signal. If it is strapped low (level mode), the slave register is transparent while LATCH is low, passing datadirectlyfromthe master registertotheswitch state decoders. StrappingEDGE/LEVEL and LATCH low causes the channel switch to execute on the WR rising edge (not recommended for serial mode operation).
(Figure 6).
(SER/PAR=0) digital programming interface is being utilized.
(Figure 6).
SER IN on the WR rising edge. In parallel mode, the Master Register loads with D3:0 (iff D3:0=0000 through 1000), or theappropriateactionis taken (iff D3:0=1011 through1111), on the WR rising edge (see Table 1).
Master Register to the Slave Register on the rising edge of LATCH. If EDGE/LEVEL = 0, data is loaded from the Master to the Slave Register while LATCH = 0. In parallel mode, commands 1011 through 1110 execute asynchronously, on the WR rising edge, regardless of the state of LATCH or EDGE/LEVEL. Parallel mode command 1111 executes a software “Latch” (see Table 1).
20 26 CE Chip Enable. When CE = 0 and CE = 1, the WR line is enabled.
21 27 CE Chip Enable. When CE = 0 and CE = 1, the WR line is enabled.
22, 24, 26, 29,
31, 33, 35, 37
25, 27, 30 31, 33, 36 AGND Analog Ground.
34 40 D3 Parallel Data Bit Input D3 when SER/PAR = 0. D3 is unused with serial programming.
36 42 D2 Parallel Data Bit Input D2 when SER/PAR = 0. D2 is unused with serial programming.
28, 30, 32, 35,
37, 39, 41, 43
OUT7-OUT0 Analog Video Outputs.
3
HA457
Absolute Maximum Ratings Thermal Information
Supply Voltage (V+ to V-). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V
Positive Supply Voltage (V+) Referred to AGND . . . . . . . . . . . . . 6V
Negative Supply Voltage (V-) Referred to AGND. . . . . . . . . . . . -6V
DGND Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AGND ±1V
Analog Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±V
SUPPLY
Digital Input Voltage. . . . . . . . . . . . . . (V+ + 0.3V) to (DGND - 0.3V)
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7). . . 1.6kV
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
Supply Voltage Range (Typical). . . . . . . . . . . . . . . . . . .±4.5V to ±5.5V
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Thermal Resistance (Typical, Note 1) θJA(oC/W)
PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
MQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . .175oC
Maximum Junction Temperature (Plastic Package). . . . . . . . .150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature, Soldering 10s . . . . . . . . . . . . . 300oC
(Lead Tips Only)
Electrical Specifications V
= ±5V, AGND = DGND = 0V, RL = 400Ω (Note 2), Unless Otherwise Specified.
SUPPLY
(NOTE 3)
PARAMETER TEST CONDITIONS
Voltage Gain V
=-0.75Vto+0.75V, Worst Case
IN
Switch Configuration, RL = 150
TEST
LEVEL
TEMP
(oC) MIN TYP MAX UNITS
A 25 1.93 1.97 2.10 V/V A Full - - -
Channel-to-Channel Gain Mismatch A 25 - 0.04 0.1 V/V
A Full - - -
Supply Current All Outputs Enabled, R
VIN = 0V, Total for All V+ (3) or V- (2) Pins
Disabled Supply Current All Outputs Disabled, R
Total for All V+ (3) or V- (2) Pins
= Open,
L
= Open,
L
A 25 - 68 80 mA A Full - 71 83
A 25 - 47 65 mA
A Full - 47 67 Input Voltage Range A Full ±2 ±2.5 - V Analog Input Current V Input Noise (R
=75Ω) DC to 40MHz B 25 - 0.15 - mV
S
= 0V A Full - 1.6 12 µA
IN
≥10kHz B 25 - 22 - nV/√Hz Analog Input Resistance DC C 25 - 4 - MΩ Analog Input Capacitance (Input Connected to
One Output or All Outputs, Note 6) Input Offset Voltage V
Channel-to-Channel Input Offset Voltage Mismatch
PLCC Package B 25 - 3.2 - pF
MQFP Package B 25 - 2.5 - pF
= 0V, Worst Case Switch
IN
Configuration
A 25 -18 -12 5 mV A Full -20 -15 6 A25-411mV
A Full - 8 ­Input Offset Voltage Drift B Full - 20 - µV/ Output Voltage Swing V
= ±1.33V, RL = 150 A25±2.45 ±2.6 - V
IN
A Full - - - V Output Resistance Enabled, DC B 25 - 0.25 -
Output Disabled A 25 1.5 2 - k
Output Capacitance (Output Disabled)
Power Supply Rejection Ratio DC, V Digital Input Current (Note 5) V
PLCC Package B 25 - 3.5 - pF MQFP Package B 25 - 2.9 - pF
= ±4.5V to ±5.5V, VIN = 0V A Full 45 53 - dB
S
= 0V or 5V A Full - - 1 µA
IN
RMS
o
C
4
HA457
Electrical Specifications V
= ±5V, AGND = DGND = 0V, RL = 400Ω (Note 2), Unless Otherwise Specified. (Continued)
SUPPLY
(NOTE 3)
PARAMETER TEST CONDITIONS
TEST
LEVEL
TEMP
(oC) MIN TYP MAX UNITS
Digital Input Low Voltage A Full - - 0.8 V Digital Input High Voltage A 25 2.0 - - V
A Full 2.2 - - V SER OUT Logic Low Voltage Serial Mode, I SER OUT Logic High Voltage Serial Mode, I SER OUT Leakage Current Output Disabled, V
= 1.6mA A Full - - 0.4 V
OL
= -0.4mA A Full 3.0 - - V
OH
= 2.5V A 25 - 0.2 5 µA
OUT
A Full - 1 10 µA AC CHARACTERISTICS (Note 4)
-3dB Bandwidth (Note 6) V
Slew Rate (Note 6) V All Hostile Crosstalk (Note 6) 10MHz, V
All Hostile Off Isolation (Note 6) 10MHz, V
= 200mV
OUT
= 1V
V
OUT
= 2V
V
OUT
= 2V
V
OUT
= 4V
OUT
10MHz, V
10MHz, V
P-P P-P
, RL= 150 B 25 - 50 - MHz
P-P
, RL = 150 B 25 - 275 - V/µs
P-P
= 1V
IN
= 1V
IN
= 1V
IN
= 1V
IN
Differential Phase NTSC or PAL, R
NTSC or PAL, R NTSC or PAL, R
Differential Gain NTSC or PAL, R
NTSC or PAL, R NTSC or PAL, R
P-P
, RL= 150 B 25 - -55 - dB
P-P
, RL = 1k B 25 - -58 - dB
P-P
, RL = 150 B 25 - 95 - dB
P-P
, RL = 1k B 25 - 75 - dB
P-P
= 150Ω B 25 - 0.5 - DEG
L
= 1kΩ B 25 - 0.05 - DEG
L
≥ 10kΩ B 25 - 0.05 - DEG
L
= 150Ω B 25 - 0.05 - %
L
= 1kΩ B 25 - 0.05 - %
L
≥ 10kΩ B 25 - 0.02 - %
L
B 25 - 95 - MHz
B 25 - 75 - MHz
B 25 - 60 - MHz
TIMING CHARACTERISTICS (See Figure 8 for more information) Write Pulse Width High (t Write Pulse Width Low (t Chip-Enable Setup Time to Write (t Chip-Enable Hold Time From Write (t Data and Address Setup Time to Write (t
) A Full 20 - - ns
WH
) A Full 20 - - ns
WL
) A Full 5 - - ns
CS
) A Full 5 - - ns
CH
) Parallel Mode A Full 20 - - ns
DS
Serial Mode A Full 20 - - ns Data and Address Hold Time From Write (t Latch Pulse Width (t Latch Delay From Write (t LATCH Edge to Output Disabled (t LATCH Edge to Output Enabled (t
) A Full 40 - - ns
L
) A Full 40 - - ns
D
OFF
ON
Output Break-Before-Make Delay (t
ON -tOFF
)
) A Full 25 - - ns
DH
) Serial Mode B Full - 30 - ns
) Serial Mode B Full - 185 - ns
Serial Mode B Full - 155 - ns
NOTES:
2. For the lowest crosstalk, and the best composite video performance, use R
1k.
L
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
4. See AC Test Circuits (Figure 1 through Figure 4).
5. Excludes D1/SER OUT which is a bidirectional terminal and thus falls under the higher Output Leakage limit.
6. See Typical Performance Curves for more information.
5
Loading...
+ 9 hidden pages