intersil CA3094B DATA SHEET

查询CA3094供应商
CA3094, CA3094A, CA3094B
Data Sheet April 1999 File Number 598.7
30MHz, High Output Current Operational Transconductance Amplifier (OTA)
The CA3094 is a differential input power control switch/amplifier with auxiliary circuit features for ease of programmability. For example, an error or unbalance signal can be amplified by the CA3094 to provide an on-off signal or proportional control output signal up to 100mA. This signal is sufficient to directly drive high current thyristors, relays, DC loads, or power transistors. The CA3094 has the generic characteristics of the CA3080 operational amplifier directly coupled to an integral Darlington power transistor capable of sinking or driving currents up to 100mA.
The gain of the differential input stage is proportional to the amplifier bias current (I variation of the integrated circuit sensitivity with either digital and/or analogprogramming signals.For example, at anI of 100µA, a 1mV change at the input will change the output from 0 to 100µA (typical).
The CA3094 is intended for operation up to 24V and is especially useful for timing circuits, in automotive equipment, and in other applications where operation up to 24V is a primary design requirement (see Figures 28, 29 and 30 in Typical Applications text). The CA3094A and CA3094B are like the CA3094 but are intended for operation up to 36V and 44V, respectively (single or dual supply).
), permitting programmable
ABC
ABC
Features
• CA3094E, M for Operation Up to 24V
• CA3094AT, E, M for Operation Up to 36V
• CA3094BT, M for Operation Up to 44V
• Designed for Single or Dual Power Supply
• Programmable: Strobing, Gating, Squelching, AGC Capabilities
• Can Deliver 3W (Average)or 10W (Peak) to External Load (in Switching Mode)
• High Power, Single Ended Class A Amplifier will Deliver Pow er Output of 0.6W (1.6W Device Dissipation)
• Total Harmonic Distortion (THD) at 0.6W in Class A Operation 1.4% (Typ)
Applications
• Error Signal Detector: Temperature Control with Thermistor Sensor; Speed Control for Shunt Wound DC Motor
• Over Current, Over Voltage, Over Temperature Protectors
• Dual Tracking Power Supply with CA3085
• Wide Frequency Range Oscillator
• Analog Timer
Ordering Information
PART NUMBER
(BRAND)
CA3094AT, BT -55 to 125 8 Pin Metal Can T8.C CA3094E, AE -55 to 125 8 Ld PDIP E8.3 CA3094M, BM -55 to 125 8 Ld SOIC M8.15
TEMP.
RANGE (oC) PACKAGE
PKG.
Pinouts
CA3094 (PDIP, SOIC)
TOP VIEW
EXT. FREQUENCY
COMPENSATION
OR INHIBIT INPUT
DIFFERENTIAL
VOLTAGE INPUTS
GND (V- IN DUAL
SUPPLY OPERATION)
1 2 3 4
SINK OUTPUT
8
(COLLECTOR) V+
7
DRIVE OUTPUT
6
(EMITTER)
5
I
CURRENT
ABC
PROGRAMMABLE INPUT (STROBE OR AGC)
NO.
• Level Detector
• Alarm Systems
• Voltage Follower
• Ramp Voltage Generator
• High Power Comparator
• Ground Fault Interrupter (GFI) Circuits
CA3094 (METAL CAN)
TOP VIEW
SINK OUTPUT (COLLECTOR)
EXT. FREQUENCY
COMPENSATION OR
INHIBIT INPUT
2
DIFFERENTIAL
VOLTAGE INPUTS
GND (V- IN DUAL SUPPLY OPERATION)
NOTE: Pin 4 is connected to case.
8
1
3
4
TAB 7
V+
DRIVE OUTPUT
6
(EMITTER)
5
CURRENT
I
ABC
PROGRAMMABLE INPUT (STROBE OR AGC)
3-12
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143
| Copyright © Intersil Corporation 1999
CA3094, CA3094A, CA3094B
Absolute Maximum Ratings Thermal Information
Supply Voltage (Between V+ and V- Terminals)
CA3094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24V
CA3094A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36V
CA3094B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V
Differential Input Voltage (Terminals 2 and 3, Note 1) . . . . . . . . . 5V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to V-
Input Current (Terminals 2 and 3) . . . . . . . . . . . . . . . . . . . . . . ±1mA
Amplifier Bias Current (Terminal 5) . . . . . . . . . . . . . . . . . . . . . . 2mA
Average Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA
Peak Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mA
Operating Conditions
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Exceeding this voltage rating will not damage the device unless the peak input signal current (1mA) is also exceeded.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . . 130 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A
Metal Can Package . . . . . . . . . . . . . . . 175 100
Maximum Junction Temperature (Metal Can Package) . . . . . . .175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Electrical Specifications T
= 25oC for Equipment Design. Single Supply V+ = 30V, Dual Supply V
A
SUPPLY
= ±15V , I
= 100µA Unless
ABC
Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
INPUT PARAMETERS
Input Offset Voltage V
TA = 25oC - 0.4 5.0 mV
IO
TA = 0oC to 70oC - - 7.0 mV
Input Offset Voltage Change |VIO| Change in VIO between I
Input Offset Current I
and I
IO
TA = 25oC - 0.02 0.2 µA
ABC
= 5µA
ABC
= 100µA
- 1 8.0 mV
TA = 0oC to 70oC - - 0.3 µA
Input Bias Current I
TA = 25oC - 0.2 0.50 µA
I
TA = 0oC to 70oC - - 0.70 µA
Device Dissipation P
I
D
= 0mA 8 10 12 mW
OUT
Common Mode Rejection Ratio CMRR 70 110 - dB Common Mode Input Voltage Range V
ICR
V+ = 30V (High) 27 28.8 - V V- = 0V (Low) 1.0 0.5 - V V+ = 15V 12 13.8 - V
V- = -15V -14 -14.5 - V Unity Gain Bandwidth f Open Loop Bandwidth at -3dB Point BW Total Harmonic Distortion
THD PD = 220mW - 0.4 - %
(Class A Operation)
Amplifier Bias Voltage
V
ABC
IC = 7.5mA, VCE = 15V, I
T
OLIC
= 7.5mA, VCE = 15V, I
= 500µA - 30 - MHz
ABC
= 500µA - 4 - kHz
ABC
PD = 600mW - 1.4 - %
- 0.68 - V
(Terminal 5 to Terminal 4) Input Offset Voltage Temperature
VIO/T-4-µV/oC
Coefficient Power Supply Rejection VIO/V - 15 150 µV/V 1/F Noise Voltage E 1/F Noise Current I Differential Input Resistance R Differential Input Capacitance C
f = 10Hz, I
N
f = 10Hz, I
N
I
I I
= 20µA 0.50 1.0 - M
ABC
f = 1MHz, V+ = 30V - 2.6 - pF
= 50µA - 18 -
ABC
= 50µA - 1.8 -
ABC
nV/ Hz pA/ Hz
3-13
CA3094, CA3094A, CA3094B
Electrical Specifications T
= 25oC for Equipment Design. Single Supply V+ = 30V, Dual Supply V
A
Otherwise Specified (Continued)
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OUTPUT PARAMETERS (Differential Input Voltage = 1V)
Peak Output Voltage (Terminal 6)
Peak Output Voltage (Terminal 6)
Peak Output Voltage (Terminal 8)
Peak Output Voltage (Terminal 8)
Collector-to-Emitter Saturation Voltage (Terminal 8)
Output Leakage Current
With Q13 “ON” VOM+ V+ = 30V, RL = 2k to GND 26 27 - V With Q13 “OFF” VOM- - 0.01 0.05 V Positive VOM+ V+ = 15V, V- = -15V, RL = 2k to -15V 11 12 - V Negative VOM- - -14.99 -14.95 V With Q13 “OFF” VOM+ V+ = 30V, RL = 2k to 30V 29.95 29.99 - V With Q13 “ON” VOM- - 0.040 - V Positive VOM+ V+ = 15V, V- = -15V, Negative VOM- - -14.96 - V
V
CE(
RL = 2k to 15V
V+ = 30V, IC = 50mA, Terminal 6
)
SAT
Grounded
V+ = 30V - 2 10 µA (Terminal 6 to Terminal 4)
Composite Small Signal Current Transfer Ratio (Beta) (Q12 and Q13)
Output Capacitance Terminal 6 C
Terminal 8 - 17 - pF
h
FE
V+ = 30V, VCE = 5V, IC = 50mA 16,000 100,000 -
f = 1MHz, All Remaining Terminals Tied
O
to Terminal 4
TRANSFER PARAMETERS
Voltage Gain A V+ = 30V, I
RL = 2k
Forward Transconductance to Terminal 1
Slew Rate (Open Loop)
Positive Slope SR I Negative Slope - 50 - V/µs
Unity Gain (Non-Inverting Compensated) I
g
M
= 500µA, RL = 2k - 500 - V/µs
ABC
= 500µA, RL = 2k - 0.70 - V/µs
ABC
= 100µA, V
ABC
OUT
= 20V,
SUPPLY
= ±15V , I
= 100µA Unless
ABC
14.95 14.99 - V
- 0.17 0.80 V
- 5.5 - pF
20,000 100,000 - V/V
86 100 - dB
1650 2200 2750 µS
Schematic Diagram
Q
4
DIFFERENTIAL
VOLTAGE
DIFFERENTIAL
AMPLIFIER
BIAS INPUT
INPUT
VOLTAGE
INPUT
I
ABC
2
Q
1
3
5
D
1
COMPENSATION OR INHIBIT INPUT
D
2
Q
2
EXTERNAL FREQUENCY
D
3
Q
7
Q
6
Q
5
Q
3
D
4
Q
Q
11
3-14
V+
71
D
5
R
1
R
47k
4
2k
8
“SINK”
Q
OUTPUT
12
Q
13
2
6
“SOURCE”
(DRIVE)
V-
OUTPUT
Q
8
9
Q
10
D
6
OUTPUT
MODE
“Source” 6 2 3 “Sink” 8 3 2
OUTPUT
TERM
INPUTS
INV
NON-
INV
CA3094, CA3094A, CA3094B
Operating Considerations
The “Sink” Output (Terminal 8) and the “Drive” Output (Terminal 6) of the CA3094 are not inherently current (or power) limited. Therefore, if a load is connected between Terminal 6 and Terminal 4 (V- or Ground), it is important to connect a current limiting resistor between Terminal 8 and Terminal 7 (V+) to protect transistor Q13 under shorted load conditions. Similarly,if a load is connected between Terminal 8 and Terminal 7 (V+), the current limiting resistor should be connected between Terminal 6 and Terminal 4 or ground. In circuit applications where the emitter of the output transistor is not connected to the most negative potential in the system, it is recommended that a 100 current limiting resistor be inserted between Terminal 7 and the V+ supply.
Test Circuits
30V
300k
1k
100pF
6
10k
9.9k
E
OUT
5
1
8
30V
100
15V
100
7
2
CA3094
3
4
1/F Noise Measurement Circuit
When using the CA3094, A, or B audio amplifier circuits, it is frequently necessary to consider the noise performance of the device.Noise measurements are made in the circuit shown in Figure 20. This circuit is a 30dB, non-inverting amplifier with emitter follower output and phase compensation from Terminal 2 to ground. Source resistors (R
) are set to 0 or
S
1M for E noise and I noise measurements, respectiv ely. These measurements are made at frequencies of 10Hz, 100Hz and 1kHz with a 1Hz measurement bandwidth. Typical values for 1/f noise at 10Hz and 50µA I
EN18nV Hz= IN1.8pA Hz=
NOTES:
3. Input Offset Voltage: .
4. For Power Supply Rejection Test: (1) vary V+ by -2V; then (2) vary V- by +2V.
5. Equations:
(1)
V+ Rejection
(2)
V- Rejection
6. Power Supply Rejection: .
and .
E
IO
200
dB()20
200
-----------------=
OUT 100
V
E0OUT E1OUT
------------------------------------------------ -=
E0OUT E2OUT
------------------------------------------------ -=
are:
ABC
1
---------------------------------------------
log=
V
REJECTION
Maximum Reading of Step 1 or Step 2
FIGURE 1. INPUT OFFSET VOLTAGE AND POWER SUPPLY REJECTION TEST CIRCUIT
30V
R
5
1
8. I
ABC
8
220
0.001µF
OS
6
150k
--------------------------------=
10
E 6
15V
NOTES:
7. P
DISSIPATION
2
3
1M
= (V+)(I)
7
CA3094
4
FIGURE 2. INPUT OFFSET CURRENT TEST CIRCUIT
OUT
VOLTS
---------------------
AMPS
1M
E
OUT
30V
300k
5
4
15V
NOTE: I
7
2
-
CA3094A
+
3
I
-- -=
I
2
FIGURE 3. INPUT BIAS CURRENT TEST CIRCUIT
3-15
Test Circuits (Continued)
30V
100
100
V
CMR
0.8V TO 27.2V
15V
2
3
9.9k
200
FIGURE 4. COMMON MODE RANGE AND REJECTION RATIO TEST CIRCUIT
7
-
CA3094
+
1
1k
100pF
4.7k
CA3094, CA3094A, CA3094B
10k
8
6
4
10k
E
OUT
NOTES:
9. .
CMRR
100 26V×
=
--------------------------------------------
E
2OUTE1OUT
10. Input Voltage Range for CMRR = 1V to 27V.
11. .
CMRR (dB) 20
100 26V×
log=
--------------------------------------------
E
2OUTE1OUT
3.6k
120
I
ABC
R
S
(NOTE)
3
R
S
(NOTE)
I
(µA)
ABC
C
COMP
(pF)
50
50 50
5
7
2
-
CA3094A
+
4
1
C
C
NOTE: RS= 1M
(1/F Noise Current Test). RS= 0
(1/F Noise Voltage Test).
500 500
FIGURE 5. 1/F NOISE TEST CIRCUIT
+15V
8
6
+15V
500
3k
-15V
OUTPUT (RMS)
+15V
7
8
6
OUTPUT
R
= 2k
L
-15V
10k
91
100 10
10k
10
R
()
+15V-15V
R
S
5
I
ABC
2
-
CA3094A
3
+
4
I
S
ABC
(µA)
56K 500
560K 50
56M 5
FIGURE 6. OPEN LOOP GAIN vs FREQUENCY TEST CIRCUIT
+15V
I
ABC
5
2V 0V
2
13k
3
15k
-15V
7
-
CA3094A
+
4
FIGURE 7. OPEN LOOP SLEW RATE vs I
3-16
8
6
2k
TEST CIRCUIT
ABC
E
OUT
56k
5
±10V
10k
2
3
220
0.001µF
-
CA3094A
+
1
7
8
4
-15V
10k
6
2k
FIGURE 8. SLEW RATEvs NON-INVERTING UNITY GAIN
TEST CIRCUIT
E
OUT
Loading...
+ 9 hidden pages