Intersil Corporation CA3078A, CA3078 Datasheet

CA3078, CA3078A
Data Sheet December 1998 File Number 535.5
2MHz, Micropower Operational Amplifier
The CA3078 and CA3078A are high gain monolithic operational amplifiers which can deliver milliamperes of current yetonlyconsumemicrowattsofstandbypower.Their operating points are externally adjustable and frequency compensation may be accomplished with one external capacitor. The CA3078 and CA3078A provide the designer with the opportunity to tailor the frequency response and improve the slew rate without sacrificing power. Operation with a single 1.5V battery is a practical reality with these devices.
The CA3078A is a premium device having a supply voltage range of V± = 0.75V to V± = 15V.The CA3078 has the same lower supply voltage limit but the upper limit is V+ = +6V and V- = -6V.
Ordering Information
PART NUMBER
(BRAND)
CA3078AE -55 to 125 8 Ld PDIP E8.3 CA3078AM
(3078A) CA3078AM96
(3078A) CA3078AT -55 to 125 8 Pin Metal Can T8.C CA3078E 0 to 70 8 Ld PDIP E8.3 CA3078M
(3078) CA3078T 0 to 70 8 Pin Metal Can T8.C
TEMP.
PKG.
RANGE (oC) PACKAGE
-55 to 125 8 Ld SOIC M8.15
-55 to 125 8 Ld SOIC Tape and Reel M8.15
0 to 70 8 Ld SOIC M8.15
NO.
Features
• Low Standby Power . . . . . . . . . . . . . . . As Low As 700nW
• Wide Supply Voltage Range. . . . . . . . . . . ±0.75V to ±15V
• High Peak Output Current . . . . . . . . . . . . . . . 6.5mA (Min)
• Adjustable Quiescent Current
• Output Short Circuit Protection
Applications
• Portable Electronics • Intrusion Alarms
• Telemetry • Instrumentation
• Medical Electronics
Pinouts
CA3078 (PDIP, SOIC)
TOP VIEW
COMP
1
INPUT
2 3 4
V-
INV. INPUT
NON-INV.
CA3078 (METAL CAN)
TOP VIEW
COMP
8
1
INV.
2
INPUT
NON-INV.
INPUT
+
3
4
V-
NOTE: Case Voltage = Floating
-
+
TAB
7
5
V+
6
OUTPUT
BIAS
8
COMP
7
V+ OUTPUT
6 5
BIAS
V+
R
SET
Schematic Diagram
NON­INVERTING
3
INVERTING
2
BIAS
5
7
D
2
Q
D
1
1
D
3
Q
6
Q
4
D
9
Q
3
1
Q
2
D
4
Q
5
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
D
5
Q
7
Q
8
D
6
D
7
1
COMPENSATION
1-888-INTERSIL or 321-724-7143
Q
Q
12
10
Q
11
D
8
Q
9
8
50
Q
13
Q
14
50
V+
Q
18
Q
OUTPUT
16
6
Q
15
Q
17
V-
4
| Copyright © Intersil Corporation 1999
CA3078, CA3078A
Absolute Maximum Ratings Thermal Information
Supply Voltage (Between V+ and V- Terminal)
CA3078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14V
CA3078A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to V-
Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.1mA
Output Short Circuit Duration (Note 1). . . . . . . . . . . . . No Limitation
Operating Conditions
Temperature Range
CA3078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
CA3078A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Short circuit may be applied to ground or to either supply.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications For Equipment Design
CA3078 LIMITS CA3078A LIMITS
TEST CONDITIONS
PARAMETER
V
IO
I
IO
I
IB
A
OL
I
Q
P
D
V
OM
V
ICR
V+
and V-
±6V 10 - - 1.3 4.5 - 5 - 0.70 3.5 - 4.5 mV
R
(k)
R
S
(k)
L
MIN TYP MAX MIN MAX MIN TYP MAX MIN MAX
- - - 6 32 - 40 - 0.50 2.5 - 5.0 nA
- - - 60 170 - 200 - 7 12 - 50 nA
- 10 88 92 - 86 - 92 100 - 90 - dB
- - - 100 130 - 150 - 20 25 - 45 µA
- - - 1200 1560 - 1800 - 240 300 - 540 µW
- 10 ±5.1 ±5.3 - ±5-±5.1 ±5.3 - ±5- V
≤10 - - -5.5 to
CMRR 10 - 80 110 - - - 80 115 - - - dB
IOM+ or IOM- - - - 12 - 6.5 30 - 12 - 6.5 30 mA
VIO/∆V+ ≤10 - 76 93 - - - 76 105 - - - µV/V
VIO/∆V- ≤10 - 76 93 - - - 76 105 - - - µV/V
V
IO
A
OL
I
Q
P
D
V
OM
±15V ≤10 - - - - - - - 1.4 3.5 - 4.5 mV
- 10 - - - - - 92 100 - 88 - dB
--------2030-50µA
- - - - - - - - 600 750 - 1350 µW
- 10-----±13.7 ±14.1 - ±13.5 - V
CMRR 10 - - - - - - 80 106 - - - dB
I
IB
I
IO
--------714-55nA
- - - - - - - - 0.50 2.7 - 5.5 nA
R
TA = 25oC
+5.8
= 1M R
SET
- -5 to
Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . . 130 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . 165 N/A
Metal Can Package . . . . . . . . . . . . . . . 175 100
Maximum Junction Temperature (Metal Can Package). . . . . . . .175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
= 5.1M
SET
TA = 0oC to
70oCT
= 25oC
A
TA = -55oC to
125oC
UNITS
+5
- - -5.5 to +5.8
- -5 to
R
= 13M
SET
-V
+5
2
CA3078, CA3078A
Electrical Specifications T
= 25oC, Typical Values Intended Only for Design Guidance
A
CA3078 CA3078A
PARAMETER
V
IO
I
IO
I
IB
A
OL
I
Q
P
D
V
OP-P
V
ICR
V+ = +1.3V,
V- = -1.3V
R
= 2M
SET
1.3 1.5 0.7 0.9 mV
1.7 0.5 0.3 0.054 nA 9 1.3 3.7 0.45 nA
80 60 84 65 dB 10 1 10 1 µA 26 1.5 26 1.5 µW
1.4 0.3 1.4 0.3 V
-0.8 to +1.1 -0.2 to +0.5 -0.8 to +1.1 -0.2 to +0.5 V
V+ = +0.75V,
V- = -0.75V
R
= 10M
SET
V+ = +1.3V,
V- = -1.3V
R
= 2M
SET
V+ = +0.75V,
V- = -0.75V
R
= 10M
SET
CMRR 100 90 100 90 dB
IOM± 12 0.5 12 0.5 mA
VIO/∆V± 20 50 20 50 µV/V
Electrical Specifications T
= 25oC and V
A
SUPPLY
= ±6V, Typical Values Intended Only for Design Guidance
CA3078 CA3078A
PARAMETER TEST CONDITIONS
VIO/∆T
IIO/∆T
RS≤10kΩ 656µV/oC
A
RS≤10kΩ 70 6.3 70 pA/oC
A
= 1M R
SET
= 5.1M R
SET
SET
= 1M
GBWP AV = 100, C1 = 10pF 2 0.3 2 MHz
SR See Figures 23, 24 0.04 0.027 0.04 V/µs
1.5 0.5 1.5 V/µs
t
R
R
I
R
O
10% to 90% Rise Time 2.5 3 2.5 µs
- 0.87 7.4 1.7 M
- 0.8 1 0.8 k
eN(10Hz) RS = 0 25 40 - nV/Hz
iN(10Hz) RS = 1M 1 0.25 - pA/Hz
UNITS
UNITSR
3
Test Circuits
100k
V+
CA3078, CA3078A
V+
100k
0V
V
IN
R2 - C
R
1 2
100k
R
C
51k
OPTIONAL COMP.
V+
7
2
-
3
CA3078 CA3078A
+
4
V-
R
1
2
2
R
SET
5
6
8
1
10k
C
1
C
L
FIGURE1. TRANSIENT RESPONSE ANDSLEWRATE,UNITY
GAIN (INVERTING) TEST CIRCUIT
NON-INVERTING
INPUT
V+
1M
V-
R
I
R
B
3
2
R
R
I
V+
7
+
CA3078 CA3078A
-
F
4
V-
6
OUTPUT
Value of RB required to have a null adjustment range of ±7.5mV
R
B
assuming RB > >
RI RF V+
(RI + RF) 7.5 x 10
RI R
RI + R
-3
F
F
V
0V
OUT
0V
V
IN
R2 - C
R
1 2
R
2
C
2
100k
OPTIONAL COMP.
2
3
V+
7
-
CA3078 CA3078A
+
4
V-
R
1
R
SET
5
6
8
C
1
C
10k
L
1
FIGURE 2. SLEW RATE,UNITY GAIN (NON-INVERTING)
TEST CIRCUIT
INVERTING
R
INPUT
V+
1M
V-
F
R
I
R
B
2
3
7
-
CA3078 CA3078A
+
4
V+
V-
OUTPUT
6
Value of RB required to have a null adjustment range of ±7.5mV
RI V+
R
B
assuming RB > > R
7.5 x 10
-3 I
V
0V
OUT
FIGURE 3. OFFSET VOLTAGE NULL CIRCUITS
5.1M
R
5
8
SET
30M
=
6
1.5V
“AA” CELL
+
5µF
R
L
10M
+
-
510k
V
P-P
1µF
1µF
10M
10M
V
P-P
510k
1µF
10M
2
3
7
-
CA3078 CA3078A
+
1
4
7pF
2
3
5.1M
7
-
CA3078 CA3078A
+
1
4
7pF
5
8
R
SET
30M
=
6
FIGURE 4. INVERTING 20dB AMPLIFIER CIRCUIT FIGURE 5. NON-INVERTING 20dB AMPLIFIER CIRCUIT
4
1.5V
“AA” CELL
+
5µF
R
L
+
-
TABLE 1. UNITY GAIN SLEW RATE vs COMPENSATION - CA3078 AND CA3078A
V Ambient Temperature (TA) = 25oC
CA3078 - IQ = 100µA Single Capacitor 0 750
Resistor and Capacitor 3.5 350 Input CA3078A - IQ = 20µA
Single Capacitor 0 300 Resistor and Capacitor 14 100 Input
= ±6V, Output Voltage (VO)=±5V, Load Resistance (RL) = 10kΩ, Transient Response: 10% overshoot for an output voltage of 100mV,
SUPPLY
R
COMPENSATION
TECHNIQUE
1
k pF kΩµFV/µsk pF kΩµFV/µs
CA3078, CA3078A
UNITY GAIN (INVERTING)
FIGURE 1
C
1
0 0.25 0.306 0.67
0 0.644 0.156 0.29
R
2
∞ ∞
∞ ∞
C
SLEW RA TE R
2
0 0.0085 0 1500 0 0.04 5.3 500
0 0.0095 0 800 0 0.027 34 125
UNITY GAIN (NON-INVERTING)
FIGURE 2
1
C
1
R
∞ ∞
0 0.311 0.45 0.67
∞ ∞
0 0.77 0.4 0.4
C
2
SLEW RA TE
2
0 0.0095 0 0.024
0 0.003 0 0.02
Application Information
Compensation Techniques
The CA3078A and CA3078 can be phase compensated with one or two external components depending upon the closed loop gain, power consumption, and speed desired. The recommended compensation is a resistor in series with a capacitor connected from Terminal 1 to Terminal 8. Values of the resistor and capacitor required for compensation as a function of closed loop gain are shown in Figures 25 and 26. These curves represent the compensation necessary at quiescent currents of 100µA and 20µA, respectively, for a transient response with 10% overshoot. Figures 23 and 24 show the slew rates that can be obtained with the two different compensation techniques. Higher speeds can be achieved
Typical Performance Curves
VS = ±6 T
= 25oC
A
10k
R
S
3.0
2.4
1.8
1.2
0.6
INPUT OFFSET VOLTAGE (mV)
0
1 10 100
TOTAL QUIESCENT CURRENT A)
CA3078
CA3078A
1000
with input compensation, but this increases noise output. Compensation can also be accomplished with a single capacitor connectedfrom Terminal1 to Terminal8, with speed being sacrificed for simplicity. Tab le 1 gives an indication of slew rates that can be obtained with various compensation techniques at quiescent currents of 100µA and 20µA.
Single Supply Operation
The CA3078A and CA3078 can operate from a single supply with a minimum total supply voltage of 1.5V. Figures 4 and 5 show the CA3078A or CA3078 in inverting and non-inverting 20dB amplifier configurations utilizing a 1.5V type “AA” cell for a supply. The total consumption for either circuit is approximately 675nW. The output voltage swing in this configuration is 300mV
= ±6
V
S
TA = 25oC
10
CA3078
1
0.1
INPUT OFFSET CURRENT (nA)
0.01 1 10 1000
TOTAL QUIESCENT CURRENT A)
with a 20k load.
P-P
CA3078A
100
10000
FIGURE 6. INPUT OFFSET VOLTAGEvs TOTAL QUIESCENT
CURRENT
5
FIGURE 7. INPUTOFFSET CURRENT vs TOTAL QUIESCENT
CURRENT
Typical Performance Curves (Continued)
CA3078, CA3078A
VS = ±6
= 25oC
T
A
100
10
INPUT BIAS CURRENT (nA)
0.1
CA3078
CA3078A
1
1 10 1000
TOTAL QUIESCENT CURRENT (µA)
10000100
FIGURE 8. INPUT BIAS CURRENT vs TOTALQUIESCENT
CURRENT
1000
= ±15
V
100
10
1
0.1
BIAS SETTING RESISTANCE (M)
0.01 1000 100 10 1 0.1 0.01 0.001
S
+6
-6 +3
-3 +1
-1
TA = 25oC R
CONNECTED BETWEEN
SET
TERMINAL 5 AND V+
TOTAL QUIESCENT CURRENT (µA)
TA = 25oC
CA3078A
126
RL = 1M
108
90 72 54
36 18
OPEN LOOP VOLTAGE GAIN (dB)
0
1 10 100
10k
2k
TOTAL QUIESCENT CURRENT A)
FIGURE 9. OPEN LOOP VOLTAGEGAIN vs TOTAL
QUIESCENT CURRENT
100
VS = ±6 TO VS = ±15 T
= 25oC
A
10
1
MAXIMUM OUTPUT CURRENT (mA)
0.1 1 10 100
TOTAL QUIESCENT CURRENT (µA)
1000
CA3078
126 108 90
72 54
36 18
0
1000
FIGURE 10. BIAS SETTING RESISTANCEvs TOTAL
QUIESCENT CURRENT
VS = ±1.3V TA = 25oC
1.5
1.0
0.5
OUTPUT VOLTAGE SWING (V)
0
0 0.5 1.0 1.5 2.0
TOTAL QUIESCENT CURRENT (µA)
RL = 50k
10k 5k 2k 1k 500
FIGURE12. OUTPUT VOLTAGE SWING vs TOTAL QUIESCENT
CURRENT
6
FIGURE 11. MAXIMUM OUTPUT CURRENT vs TOTAL
QUIESCENT CURRENT
VS = ±6
= 100µA
I
120
Q
100
80
100 300
60
1000
40
20
0
= 10kΩ, TA = 25oC
R
L
OPEN LOOP VOLTAGE GAIN (dB)
C1- BETWEEN TERMINALS 1 AND 8
-20
0.1 1 10
1
FREQUENCY (Hz)
10210310410510
C1 = 0pF C
= 10pF
1
C
= 30pF
1
0
100
φ
200
300
400
6
FIGURE 13. OPEN LOOP VOLTAGE GAIN vs FREQUENCY
PHASE ANGLE (DEGREES)
Typical Performance Curves (Continued)
CA3078, CA3078A
100
IQ = 20µA TA = 25oC
10
1
0.1
+0.1
-0.1
-0.1
-1
PEAK OUTPUT VOLTAGE (V), COMMON MODE V OLTAGE RANGE (V)
V
ICR
V
OM
+100+10+1
-1 -10 -100
SUPPLY VOLTS (V+, V-)
-V
ICR
-V
OM
VS = ±6
120
= 20µA
I
Q
100
80
60
100 300
40
1000
20
OPEN LOOP VOLTAGE GAIN (dB)
= 10k
R
0
L
TA = 25oC
- BETWEEN TERMINALS 1 AND 8
C
1
-20
0.1 1 10
1
10210310410510
FREQUENCY (Hz)
C1 = 0pF C
C
= 10pF
1
= 30pF
1
φ
0
100
200
300
400
6
FIGURE 15. OPEN LOOP VOLTAGE GAIN vs FREQUENCY
1.75 VS = ±6
1.50
CA3078 I
= 100µA
1.25
1.00
0.75
Q
CA3078A I
= 20µA
Q
PHASE ANGLE (DEGREES)
-10
FIGURE 14. OUTPUT AND COMMON MODE VOLTAGE vs
SUPPLY VOLTAGE
VS = ±6
2.5
2.0
1.5 CA3078A
I
1.0
0.5
INPUT OFFSET CURRENT (nA) - CA3078AT
0
= 20µA
Q
TEMPERATURE (
CA3078 I
= 100µA
Q
o
C)
1251007550250-25-50-75
0.50
INPUT OFFSET VOLTAGE (mV)
0.25
0
FIGURE 16. INPUT OFFSET VOLTAGE vs TEMPERATURE
VS = ±6
15.0
10
8
6
4
2
INPUT OFFSET CURRENT (nA) - CA3078T
0
12.5
10.0
7.5
5.0
2.5
INPUT BIAS CURRENT (nA) - CA3078AT
00
TEMPERATURE (oC)
CA3078A I
= 20µA
Q
CA3078
I
= 100µA
Q
TEMPERATURE (
125
1007550250-25-50-75
100
75
50
25
INPUT BIAS CURRENT (nA) - CA3078T
o
C)
1251007550250-25-50-75
FIGURE 17. INPUT OFFSET CURRENT vs TEMPERATURE FIGURE 18. INPUT BIAS CURRENT vs TEMPERATURE
7
Typical Performance Curves (Continued)
CA3078, CA3078A
VS = ±6
110
105
100
95
90
85
OPEN LOOP VOLTAGE GAIN (dB)
80
CA3078A I
= 20µA
Q
CA3078 I
= 100µA
Q
TEMPERATURE (
125
1007550250-25-50-75
o
C)
VS = ±6
50
40
30
20
10
0
TOTAL QUIESCENT CURRENT (µA) - CA3078AT
TEMPERATURE (
CA3078
CA3078A
o
C)
1251007550250-25-50-75
200
150
100
50
0
TOTAL QUIESCENT CURRENT (µA) - CA3078T
FIGURE 19. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE FIGURE 20. TOTAL QUIESCENT CURRENT vs TEMPERATURE
100
10
VS = ±6
= 25oC
T
A
CA3078AT
IQ = 20µA
IQ = 100µA
0.1
1
IQ = 20µA
IQ = 100µA
VS = ±6 T
= 25oC
A
CA3078AT
EQUIVALENT INPUT NOISE VOLT A GE (nV/√Hz)
0
1
10
2
10
FREQUENCY (Hz)
3
10
4
10
FIGURE 21. EQUIVALENT INPUT NOISE VOLTAGE vs
FREQUENCY
EQUIVALENT INPUT NOISE CURRENT (pA/√Hz)
5
10
0.01
1
10
2
10
3
10
FREQUENCY (Hz)
4
10
5
10
FIGURE 22. EQUIVALENT INPUT NOISE CURRENT vs
FREQUENCY
8
Typical Performance Curves (Continued)
RESISTOR-CAPACITOR
1.5
1.25
0.75
0.5
SLEW RATE (V/µs)
0.25
COMPENSATION
- C1 BETWEEN
(R
1
TERMINALS 1 AND 8)
1
CAP A CIT OR COMPENSATION (BETWEEN TERMINALS 1 AND 8)
CA3078, CA3078A
0.6
0.5
0.4
0.3
0.2
SLEW RATE (V/µs)
0.1
RESISTOR-CAPACITOR
COMPENSATION
- C1 BETWEEN
(R
1
TERMINALS 1 AND 8)
CAP A CIT OR COMPENSATION (BETWEEN TERMINALS 1 AND 8)
0
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)
6050403020100
908070
90807060504029.719.16
Supply Volts: V+ = +6, V- = -6 Quiescent Current (IQ) = 100µA Ambient Temperature (TA) = 25oC Load Impedance: RL = 10k, CL = 100pF Feedback Resistance (RF) = 0.1M Output Voltage (V
OP-P
) = 10V
R1determined for transient response with 10% overshoot on a 100mV output signal (R1 x C1 = 2.5 x 10-6)
FIGURE 23. SLEW RATE vs CLOSED LOOP GAIN FOR
IQ = 100mA - CA3078
1000
100
CAP A CIT OR COMPENSATION (BETWEEN TERMINALS 1 AND 8)
RESISTOR-CAPACITOR COMPENSATION
- C1 BETWEEN
(R
1
TERMINALS 1 AND 8)
0
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)
6050403020100
908070
90807060504029.719.16
Supply Volts: V+ = +6, V- = -6 Quiescent Current (IQ) = 20µA Ambient Temperature (TA) = 25oC Load Impedance: RL = 10k, CL = 100pF Feedback Resistance (RF) = 0.1M Output Voltage (V
OP-P
) = 10V
R1determined for transient response with 10% overshoot on a 100mV output signal (R1 x C1 = 2 x 10-6)
FIGURE 24. SLEW RATE vs CLOSED LOOP GAIN FOR
IQ = 20mA - CA3078A
1000
100
CAP A CIT OR COMPENSATION (BETWEEN TERMINALS 1 AND 8)
RESISTOR-CAPACITOR COMPENSATION
- C1 BETWEEN
(R
1
TERMINALS 1 AND 8)
10
1
PHASE COMPENSATION CAPACITOR (pF)
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)
6050403020100
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)
908070
90807060504029.719.16
Supply Volts: V+ = +6, V- = -6 Quiescent Current (IQ) = 100µA Ambient Temperature (TA) = 25oC Load Impedance: RL = 10k, CL = 100pF Feedback Resistance (RF) = 0.1M Output Voltage (V
OP-P
) = 100mV
R1determined for transient response with 10% overshoot on a 100mV output signal (R1 x C1 = 2.5 x 10-6)
FIGURE 25. PHASECOMPENSATIONCAPACITANCE vs
CLOSED LOOP GAIN - CA3078
9
10
1
PHASE COMPENSATION CAPACITOR (pF)
CLOSED LOOP NON-INVERTING VOLTAGE GAIN (dB)
6050403020100
CLOSED LOOP INVERTING VOLTAGE GAIN (dB)
908070
90807060504029.719.16
Supply Volts: V+ = +6, V- = -6 Quiescent Current (IQ) = 20µA Ambient Temperature (TA) = 25oC Load Impedance: RL = 10k, CL = 100pF Feedback Resistance (RF) = 0.1M Output Voltage (V
OP-P
) = 100mV
R1determined for transient response with 10% overshoot on a 100mV output signal (R1 x C1 = 2 x 10-6)
FIGURE 26. PHASECOMPENSATIONCAPACITANCE vs
CLOSED LOOP GAIN - CA3078A
Dual-In-Line Plastic Packages (PDIP)
CA3078, CA3078A
N
D1
-C-
E1
-B-
A1
A2
A
L
e
C
S
INDEX
AREA
BASE
PLANE
SEATING
PLANE
D1 B1
1 2 3 N/2
-A­D
e
B
0.010 (0.25) C AMB
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section
2.2 of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protru­sions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and are measured with the leads constrained to be per-
e
pendicular to datum .
A
-C-
7. eB and eC are measured at the lead tips with the leads uncon­strained. eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
E8.3 (JEDEC MS-001-BA ISSUE D)
8 LEAD DUAL-IN-LINE PLASTIC PACKAGE
INCHES MILLIMETERS
SYMBOL
A - 0.210 - 5.33 4
E
A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 -
B 0.014 0.022 0.356 0.558 -
C
L
e
A
C
e
B
B1 0.045 0.070 1.15 1.77 8, 10
C 0.008 0.014 0.204 0.355 ­D 0.355 0.400 9.01 10.16 5
D1 0.005 - 0.13 - 5
E 0.300 0.325 7.62 8.25 6
E1 0.240 0.280 6.10 7.11 5
e 0.100 BSC 2.54 BSC -
e
A
e
B
0.300 BSC 7.62 BSC 6
- 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N8 89
NOTESMIN MAX MIN MAX
Rev. 0 12/93
10
CA3078, CA3078A
Small Outline Plastic Packages (SOIC)
N
INDEX AREA
123
-A-
0.25(0.010) B
H
E
-B-
SEATING PLANE
D
A
-C-
M
L
h x 45
M
o
α
e
B
0.25(0.010) C AMB
M
NOTES:
11. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95.
12. Dimensioning and tolerancing per ANSI Y14.5M-1982.
13. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm(0.006 inch) per side.
14. Dimension “E” does not include interlead flash or protrusions. Inter­lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
15. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
16. “L” is the length of terminal for soldering to a substrate.
17. “N” is the number of terminal positions.
18. Terminal numbers are shown for reference only.
19. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch).
20. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
A1
0.10(0.004)
S
C
M8.15 (JEDEC MS-012-AA ISSUE C)
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
INCHES MILLIMETERS
SYMBOL
A 0.0532 0.0688 1.35 1.75 -
A1 0.0040 0.0098 0.10 0.25 -
B 0.013 0.020 0.33 0.51 9 C 0.0075 0.0098 0.19 0.25 ­D 0.1890 0.1968 4.80 5.00 3 E 0.1497 0.1574 3.80 4.00 4
e 0.050 BSC 1.27 BSC -
H 0.2284 0.2440 5.80 6.20 -
h 0.0099 0.0196 0.25 0.50 5 L 0.016 0.050 0.40 1.27 6
N8 87
o
α
0
o
8
o
0
o
8
Rev. 0 12/93
NOTESMIN MAX MIN MAX
-
11
Metal Can Packages (Can)
CA3078, CA3078A
REFERENCE PLANE
ØD ØD1
A
F
Q
Øb1
L L2
L1 A A
Øe
Øb1 Øb
BASE AND SEATING PLANE
BASE METAL LEAD FINISH
SECTION A-A
Øb2
e1
ØD2
2
β
N
1
α
k
NOTES:
1. (All leads) Øb applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
2. Measured from maximum diameter of the product.
3. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position (N -1 places) from α, looking at the bottom of the package.
4. N is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
6. Controlling dimension: INCH.
T8.C MIL-STD-1835 MACY1-X8 (A1)
8 LEAD METAL CAN PACKAGE
INCHES MILLIMETERS
SYMBOL
A 0.165 0.185 4.19 4.70 -
Øb 0.016 0.019 0.41 0.48 1
k1
Øb1 0.016 0.021 0.41 0.53 1 Øb2 0.016 0.024 0.41 0.61 -
ØD 0.335 0.375 8.51 9.40 -
ØD1 0.305 0.335 7.75 8.51 -
C
L
ØD2 0.110 0.160 2.79 4.06 -
e 0.200 BSC 5.08 BSC -
e1 0.100 BSC 2.54 BSC -
F - 0.040 - 1.02 ­k 0.027 0.034 0.69 0.86 -
k1 0.027 0.045 0.69 1.14 2
L 0.500 0.750 12.70 19.05 1 L1 - 0.050 - 1.27 1 L2 0.250 - 6.35 - 1
Q 0.010 0.045 0.25 1.14 -
α
45o BSC 45o BSC 3
β 45o BSC 45o BSC 3
N8 84
NOTESMIN MAX MIN MAX
Rev. 0 5/18/94
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporationreserves the rightto make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240
12
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...