查询IRF2903Z供应商
PD - 96988A
AUTOMOTIVE MOSFET
IRF2903ZS
IRF2903ZL
IRF2903Z
Features
l Advanced Process Technology
l Ultra Low On-Resistance
l 175°C Operating Temperature
l Fast Switching
l Repetitive Avalanche Allowed up to Tjmax
G
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low onresistance per silicon area. Additional features of
this design are a 175°C junction operating temperature, fast switching speed and improved repetitive
avalanche rating . These features combine to make
this design an extremely efficient and reliable device
for use in Automotive applications and a wide variety
of other applications.
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C
ID @ TC = 100°C
@ TC = 25°C
I
D
I
DM
PD @TC = 25°C
V
GS
E
AS (Thermally limited)
(Tested )
E
AS
I
AR
E
AR
T
J
T
STG
Continuous Drain Current, V
Continuous Drain Current, V
Continuous Drain Current, V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
c
c
@ 10V (Silicon Limited)
GS
@ 10V (Silicon Limited)
GS
@ 10V (Package Limited)
GS
d
g
i
D
TO-220AB
IRF2903Z
GDS
Gate Drain Source
h
Thermal Resistance
Parameter Typ. Max.
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount, steady state)
k
i
ik
jk
www.irf.com 1
HEXFET® Power MOSFET
D
S
D
S
D
G
D2Pak
IRF2903ZS
See Fig.12a, 12b, 15, 16
-55 to + 175
300 (1.6mm from case )
10 lbf
––– 0.51
0.50 –––
––– 62
––– 40
V
R
DS(on)
S
D
G
Max.
260
180
75
1020
290
2.0
± 20
290
820
y
in (1.1Nym)
= 30V
DSS
= 2.4mΩ
I
= 75A
D
D
IRF2903ZL
G
TO-262
A
W
W/°C
V
mJ
A
mJ
°C
Units
°C/W
S
D
8/26/05
IRF2903Z/S/L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
DSS
∆V
DSS
R
DS(on
V
GS(th
gfs Forward Transconductance 120 ––– ––– S
I
DSS
I
GSS
Q
Q
s
Q
d
t
d(on
t
r
t
d(off
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
eff.
C
oss
Source-Drain Ratings and Characteristics
I
I
M
V
D
t
r
Q
r
t
on
Drain-to-Source Breakdown Voltage 30 ––– ––– V
/∆T
Breakdown Voltage Temp. Coefficient ––– 0.021 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 1.9 2.4
mΩ
Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
Total Gate Charge ––– 160 240
Gate-to-Source Charge ––– 51 ––– nC
Gate-to-Drain ("Miller") Charge ––– 58 –––
Turn-On Delay Time ––– 24 –––
Rise Time ––– 100 –––
Turn-Off Delay Time ––– 48 ––– ns
Fall Time ––– 37 –––
Internal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
Internal Source Inductance ––– 7.5 ––– from package
Input Capacitance ––– 6320 –––
Output Capacitance ––– 1980 –––
Reverse Transfer Capacitance ––– 1100 ––– pF
Output Capacitance ––– 5930 –––
Output Capacitance ––– 2010 –––
Effective Output Capacitance ––– 3050 –––
Parameter Min. Typ. Max. Units
Continuous Source Current ––– ––– 75
(Body Diode) A
Pulsed Source Current ––– ––– 1020
(Body Diode)
Diode Forward Voltage ––– ––– 1.3 V
Reverse Recovery Time ––– 34 51 ns
Reverse Recovery Charge ––– 29 44 nC
Forward Turn-On Time
c
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, I
= 10V, ID = 75A
V
GS
= 1mA
D
e
VDS = VGS, ID = 150µA
VDS = 10V, ID = 75A
V
= 30V, VGS = 0V
DS
= 30V, VGS = 0V, TJ = 125°C
V
DS
V
= 20V
GS
= -20V
V
GS
I
= 75A
D
= 24V
V
DS
VGS = 10V
e
VDD = 15V
= 75A
I
D
= 3.2 Ω
R
G
VGS = 10V
e
and center of die contact
VGS = 0V
= 25V
V
DS
ƒ = 1.0MHz
= 0V, VDS = 1.0V, ƒ = 1.0MHz
V
GS
= 0V, VDS = 24V, ƒ = 1.0MHz
V
GS
= 0V, VDS = 0V to 24V
V
GS
f
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
= 25°C, IS = 75A, VGS = 0V
T
J
TJ = 25°C, IF = 75A, VDD = 15V
di/dt = 100A/µs
e
e
2 www.irf.com
IRF2903Z/S/L
1000
)
A
(
t
n
e
r
r
100
u
C
e
c
r
u
o
S
o
t
n
10
i
a
r
D
,
D
I
4.5V
TOP 15V
BOTTOM 4.5V
≤
60µs PULSE WIDTH
Tj = 25°C
1
0.1 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
1000.0
)
Α
(
t
n
e
r
r
u
C
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
100.0
TJ = 175°C
10.0
1.0
0.1
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
TJ = 25°C
V
= 25V
DS
≤
60µs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
1000
)
A
(
t
n
e
r
r
u
C
e
c
r
u
100
o
S
o
t
n
i
a
r
D
,
D
I
4.5V
TOP 15V
BOTTOM 4.5V
≤
60µs PULSE WIDTH
Tj = 175°C
10
0.1 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
240
)
S
(
200
e
c
n
a
t
c
160
u
d
n
o
c
s
n
120
a
r
T
d
r
a
80
w
r
o
F
,
s
f
40
G
V
DS
380µs PULSE WIDTH
0
0 20 40 60 80 100 120 140 160 180
ID, Drain-to-Source Current (A)
TJ = 175°C
= 10V
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
TJ = 25°C
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
IRF2903Z/S/L
)
F
p
(
e
c
n
a
t
i
c
a
p
a
C
,
C
12000
10000
8000
6000
4000
2000
0
1 10 100
V
= 0V, f = 1 MHZ
GS
C
= C
iss
rss
oss
= C
= C
gs
gd
ds
C
C
Ciss
Coss
Crss
+ Cgd, C
+ C
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
)
A
(
t
100.0
n
e
r
r
u
C
n
i
a
r
D
e
s
r
e
v
e
R
,
D
S
I
TJ = 175°C
10.0
TJ = 25°C
1.0
0.1
0.0 0.4 0.8 1.2 1.6 2.0 2.4
VSD, Source-to-Drain Voltage (V)
20
SHORTED
ds
gd
)
V
(
e
g
a
t
l
o
V
e
c
r
u
o
S
o
t
e
t
a
G
,
V
ID= 75A
16
12
8
S
4
G
VDS= 24V
VDS= 15V
0
0 40 80 120 160 200 240
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
V
GS
= 0V
10000
)
A
(
1000
t
n
e
r
r
u
C
100
e
c
r
u
o
S
o
t
n
i
a
r
D
,
D
I
LIMITED BY PACKAGE
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0.1 1.0 10.0 100.0
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1msec
V
, Drain-toSource Voltage (V)
DS
100µsec
10msec
DC
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com