查询IRF1503供应商
PD-94526A
AUTOMOTIVE MOSFET
Typical Applications
● 14V Automotive Electrical Systems
● 14V Electronic Power Steering
HEXFET® Power MOSFET
D
IRF1503
V
= 30V
DSS
Features
● Advanced Process Technology
● Ultra Low On-Resistance
● 175°C Operating Temperature
● Fast Switching
● Repetitive Avalanche Allowed up to Tjmax
G
S
R
DS(on)
= 3.3mΩ
ID = 75A
Description
Specifically designed for Automotive applications, this
design of HEXFET
processing techniques to achieve extremely low onresistance per silicon area. Additional features of this
HEXFET power MOSFET are a 175°C junction operating
temperature, fast switching speed and improved repetitive
avalanche rating. These combine to make this design an
extremely efficient and reliable device for use in Automotive
applications and a wide variety of other applications.
®
Power MOSFETs utilizes the lastest
TO-220AB
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon limited) 240
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (See Fig.9) 170 A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package limited) 75
I
DM
PD @TC = 25°C Power Dissipation 330 W
V
GS
E
AS
E
(tested) Single Pulse Avalanche Energy Tested Value 980
AS
I
AR
E
AR
T
J
T
STG
Pulsed Drain Current 960
Linear Derating Factor 2.2 W/°C
Gate-to-Source Voltage ± 20 V
Single Pulse Avalanche Energy 510 mJ
Avalanche Current See Fig.12a, 12b, 15, 16 A
Repetitive Avalanche Energy mJ
Operating Junction and -55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case ––– 0.45
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
Junction-to-Ambient ––– 62
www.irf.com 1
12/11/02
IRF1503
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 3420 ––– VGS = 0V, VDS = 0V to 24V
oss
Drain-to-Source Breakdown Voltage 30 ––– ––– V VGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient ––– 0.028 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– 2.6 3.3 mΩ VGS = 10V, ID = 140A
Gate Threshold Voltage 2.0 ––– 4.0 V VDS = 10V, ID = 250µA
Forward Transconductance 75 ––– ––– S VDS = 25V, ID = 140A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 30V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 200 V
Gate-to-Source Reverse Leakage ––– ––– -200
µA
nA
V
= 30V, VGS = 0V
DS
= 20V
GS
VGS = -20V
Total Gate Charge ––– 130 200 ID = 140A
Gate-to-Source Charge ––– 36 54 nC VDS = 24V
Gate-to-Drain ("Miller") Charge ––– 41 62 VGS = 10V
Turn-On Delay Time ––– 17 ––– VDD = 15V
Rise Time ––– 130 ––– ID = 140A
Turn-Off Delay Time ––– 59 ––– RG = 2.5Ω
ns
Fall Time ––– 48 ––– VGS = 10V
5.0
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
13
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact
Input Capacitance ––– 5730 ––– VGS = 0V
Output Capacitance ––– 2250 ––– pF VDS = 25V
Reverse Transfer Capacitance ––– 290 ––– ƒ = 1.0MHz, See Fig. 5
Output Capacitance ––– 7580 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 2290 ––– VGS = 0V, VDS = 24V, ƒ = 1.0MHz
D
G
S
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
240
960
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 140A, VGS = 0V
Reverse Recovery Time ––– 71 110 ns TJ = 25°C, IF = 140A, VDD = 15V
Reverse RecoveryCharge ––– 110 170 nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting T
RG = 25Ω, I
= 25°C, L = 0.049mH
J
= 140A. (See Figure 12).
AS
Pulse width ≤ 400µs; duty cycle ≤ 2%.
C
eff. is a fixed capacitance that gives the same charging time
oss
as C
Limited by T
oss
while V
is rising from 0 to 80% V
DS
, see Fig.12a, 12b, 15, 16 for typical repetitive
Jmax
DSS
.
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
2 www.irf.com
D
S
IRF1503
1000
)
A
(
t
n
e
r
r
100
u
C
e
c
r
u
o
S
o
t
-
10
n
i
a
r
D
,
D
I
VGS
TOP 15 V
10 V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
4.5V
20µs PULSE WIDTH
Tj = 25° C
1
0. 1 1 10 100
VDS, Drain-to-Source Vol tage (V)
1000
TJ = 25°C
)
Α
(
t
n
e
r
r
u
C
e
c
r
100
u
o
S
o
t
n
i
a
r
D
,
D
I
10
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V
= 25V
DS
20µs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
TJ = 175°C
1000
)
A
(
t
n
e
r
r
u
C
e
c
r
100
u
o
S
o
t
n
i
a
r
D
,
D
I
VGS
TOP 15 V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
4.5V
20µs PULSE WIDTH
10
0. 1 1 10 100
Tj = 175°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
200
)
S
(
160
e
c
n
a
t
c
u
d
120
n
o
c
s
n
a
r
T
80
d
r
a
w
r
o
F
40
,
s
f
G
0
TJ = 175°C
TJ = 25°C
V
= 25V
DS
20µs PULSE WIDTH
0 40 80 120 160 200
ID, Drain-to-Source Current (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3