International Rrectifier IR2130, IR2132 User Manual

查询IR2130 供应商
Data Sheet No. PD60019-M
IR2130/IR2132 (J)(S)
3-PHASE BRIDGE DRIVER
Features
Product Summary
Floating channel designed for bootstrap operation
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
V
OFFSET
IO+/- 200 mA / 420 mA
600V max.
Gate drive supply range from 10 to 20V
Undervoltage lockout for all channels
Over-current shutdown turns off all six drivers
Matched propagation delay for all channels
2.5V logic compatible
Outputs out of phase with inputs
Cross-conduction prevention logic
t
on/off
V
OUT
(typ.) 675 & 425 ns
10 - 20V
Deadtime (typ.) 2.5 µs (IR2130)
0.8 µs (IR2132)
Description
The IR2130/IR2132(J)(S) is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construc­tion. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which terminates all six outputs is also
signal
derived from this resistor. An open drain indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts.
FAULT
Packages
28-Lead SOIC
28-Lead PDIP
44-Lead PLCC w/o 12 Leads
T ypical Connection
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com 1
IR2130/IR2132
J)(S
(
)
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param­eters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.
Symbol Definition Min. Max. Units
V
B1,2,3
V
S1,2,3
V
HO1,2,3
V
CC
V
SS
V
LO1,2,3
V
IN
V
FLT
V
CAO
V
CA-
dVS/dt Allowable Offset Supply Voltage Transient 50 V/ns
P
D
Rth
JA
T
J
T
S
T
L
High Side Floating Supply Voltage -0.3 625 High Side Floating Offset Voltage V High Side Floating Output Voltage V
B1,2,3
S1,2,3
- 25 V
- 0.3 V
B1,2,3 B1,2,3
+ 0.3
+ 0.3
Low Side and Logic Fixed Supply Voltage -0.3 25 Logic Ground VCC - 25 V Low Side Output Voltage -0.3 V Logic Input Voltage (
Output V oltage VSS - 0.3 V
FAULT
HIN1,2,3, LIN1,2,3
& ITRIP) VSS - 0.3 V
Operational Amplifier Output Voltage VSS - 0.3 V Operational Amplifier Inverting Input Voltage VSS - 0.3 V
CC CC
SS CC CC CC
+ 0.3 + 0.3
+ 15 + 0.3 + 0.3 + 0.3
V
Package Power Dissipation @ TA +25°C (28 Lead DIP) 1.5
(28 Lead SOIC) 1.6 W
(44 Lead PLCC) 2.0
Thermal Resistance, Junction to Ambient (28 Lead DIP) 83
(28 Lead SOIC) 78 °C/W
(44 Lead PLCC) 63 Junction Temperature 150 Storage Temperature -55 150 °C Lead Temperature (Soldering, 10 seconds) 300
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.
Symbol Definition Min. Max. Units
V
B1,2,3
V
S1,2,3
V
HO1,2,3
V
CC
V
SS
V
LO1,2,3
V
IN
V
FL T
V
CAO
V
CA-
T
A
Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS). (Please refer to the Design Tip DT97-3 f or more details). Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.
2 www.irf.com
High Side Floating Supply Voltage V
S1,2,3
+ 10 V
S1,2,3
+ 20 High Side Floating Offset Voltage Note 1 600 High Side Floating Output Voltage V
S1,2,3
V
B1,2,3
Low Side and Logic Fixed Supply Voltage 10 20 Logic Ground -5 5 Low Side Output Voltage 0 V Logic Input Voltage (
Output Voltage V
FAULT
Operational Amplifier Output V oltage V Operational Amplifier Inverting Input Voltage V
HIN1,2,3, LIN1,2,3
& ITRIP) V
SS SS SS SS
CC
VSS + 5
V
CC
VSS + 5 VSS + 5
Ambient T emperature -40 125 °C
V
IR2130/IR2132
J)(S
(
Dynamic Electrical Characteristics
V
BIAS
(VCC, V
BS1,2,3
) = 15V, V
= VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic
S0,1,2,3
electrical characteristics are defined in Figures 3 through 5.
Symbol Definition Figure Min. T yp. Max. Units Test Conditions
t
on
t
off
t t
t
itrip
t
bl
t
flt
t
flt,in
t
fltclr
DT Deadtime (IR2130) 18 1.3 2.5 3.7
SR+ Operational Amplifier Slew Rate (+) 19 4 .4 6.2
SR- Operational Amplifier Slew Rate (-) 20 2.4 3.2
NOTE: For high side PWM, HIN pulse width must be ≥ 1.5µsec
Turn-On Propagation Delay 11 500 675 850 Turn-Off Propagation Delay 12 300 42 5 550 V Turn-On Rise Time 13 80 125 V
r
Turn-Off Fall Time 14 35 55
f
ITRIP to Output Shutdown Prop. Delay 15 400 660 920 VIN, V ITRIP Blanking Time ——400 V ITRIP to
FAULT
Indication Delay 16 335 59 0 84 5 V
Input Filter Time (All Six Inputs) ——310 V
LIN1,2,3
to
Clear Time 17 6.0 9.0 12.0 V
FAULT
(IR2132) 18 0.4 0.8 1.2
ns
µs
V/µs
S1,2,3
, V
IN
, V
IN
V
IN
IN
IN
= 0 & 5V
= 0 to 600V
= 0 & 5V
ITRIP
= 1V
ITRIP
= 0 & 5V
ITRIP
= 0 & 5V
= 0 & 5V
ITRIP
= 0 & 5V
Static Electrical Characteristics
V
(VCC, V
BIAS
are referenced to VSS and are applicable to all six logic input leads: are referenced to V
BS1,2,3
) = 15V, V
and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
S0,1,2,3
= VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
S0,1,2,3
HIN1,2,3
&
LIN1,2,3
. The VO and IO parameters
)
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
V V
V
IT,TH+
V
OH
V
OL
I
LK
I
QBS
I
QCC
I
IN+
I
IN-
I
ITRIP+
I
ITRIP-
V
BSUV+
V
BSUV-
V
CCUV+
V
CCUV -
R
on,FLT
www.irf.com 3
Logic “0” Input Voltage (OUT = LO) 21 2 .2 ——
IH
Logic “1” Input Voltage (OUT = HI) 22 ——0.8
IL
V
ITRIP Input Positive Going Threshold 23 400 490 58 0 High Level Output Voltage, V
- VO 24 ——100 VIN = 0V, IO = 0A
BIAS
mV Low Level Output Voltage, VO 25 ——100 VIN = 5V, IO = 0A Offset Supply Leakage Current 26 ——50 VB = VS = 600V Quiescent VBS Supply Current 27 15 30 VIN = 0V or 5V
µA
Quiescent VCC Supply Current 28 3.0 4.0 mA VIN = 0V or 5V Logic “1” Input Bias Current (OUT = HI) 29 450 650 VIN = 0V Logic “0” Input Bias Current (OUT = LO) 30 225 400 VIN = 5V
µA
High ITRIP Bias Current 31 75 150 ITRIP = 5VLow ITRIP Bias Current 32 ——100 nA ITRIP = 0V
VBS Supply Undervoltage Positive Going 33 7.5 8.35 9.2 Threshold VBS Supply Undervoltage Negative Going 34 7.1 7.95 8.8 Threshold VCC Supply Undervoltage Positive Going 35 8 .3 9.0 9.7
V
Threshold VCC Supply Undervoltage Negative Going 36 8.0 8.7 9.4 Threshold
Low On-Resistance 37 55 75
FAULT
IR2130/IR2132
J)(S
(
)
Static Electrical Characteristics -- Continued
V
(VCC, V
BIAS
are referenced to VSS and are applicable to all six logic input leads: are referenced to V
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
I
O+
I
O-
V
OS
I
CA-
CMRR Op. Amp. Common Mode Rejection Ratio 42 60 80 VS0=V
PSRR Op. Amp. Power Supply Rejection Ratio 43 55 75 VS0 = V
V
OH,AMP
V
OL,AMP
I
SRC,AMP
I
SRC,AMP
I
O+,AMP
I
O-,AMP
) = 15V, V
BS1,2,3
and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
S0,1,2,3
Output High Short Circuit Pulsed Current 38 2 00 250 VO = 0V, V
Output Low Short Circuit Pulsed Current 39 420 500 VO = 15V, V
Operational Amplifer Input Offset Voltage 40 ——30 mV VS0 = V CA- Input Bais Current 41 ——4.0 nA V
Op. Amp. High Level Output Voltage 44 5.0 5.2 5.4 V V Op. Amp. Low Level Output Voltage 45 ——20 mV V Op. Amp. Output Source Current 46 2 .3 4.0 V
Op. Amp. Output Sink Current 47 1 .0 2.1 V
Operational Amplifier Output High Short 48 4.5 6.5 V Circuit Current V Operational Amplifier Output Low Short 49 3.2 5.2 V Circuit Current V
= VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
S0,1,2,3
HIN1,2,3
&
LIN1,2,3
. The VO and IO parameters
mA
dB
VCC = 10V & 20V
CA­CA­CA-
CA-
mA
CA-
CA-
PW10 µs
PW10 µs
CA-
= 2.5V
CA-
=0.1V & 5V
CA-
CA-
= 0V, VS0 = 1V = 1V, VS0 = 0V = 0V, VS0 = 1V V
CAO
= 1V, VS0 = 0V V
CAO
= 0V, VS0 = 5V
CAO
= 5V, VS0 = 0V
CAO
IN
IN
= 0.2V
= 0.2V
= 4V
= 2V
= 0V
= 5V
= 0V
= 5V
Lead Assignments
28 Lead PDIP 44 Lead PLCC w/o 12 Leads 28 Lead SOIC (Wide Body)
IR2130 / IR2132 IR2130J / IR2132J IR2130S / IR2132S
Part Number
4 www.irf.com
Functional Block Diagram
IR2130/IR2132
J)(S
(
)
Lead Definitions
Symbol Description
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase LIN1,2,3 Logic inputs for low side gate driver output (LO1,2,3), out of phase FAULT Indicates over-current or undervoltage lockout (low side) has occurred, negative logic V
CC
ITRIP Input for over-current shutdown CAO Output of current amplifier CA- Negative input of current amplifier V
SS
V
B1,2,3
HO1,2,3 High side gate drive outputs V
S1,2,3
LO1,2,3 L ow side gate drive outputs V
S0
www.irf.com 5
Low side and logic fixed supply
Logic ground High side floating supplies
High side floating supply returns
Low side return and positive input of current amplifier
IR2130/IR2132
HIN1,2,3
LIN1,2,3
ITRIP
FAULT
HO1,2,3
LO1,2,3
Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit
J)(S
(
)
HIN1,2,3
50% 50%
HIN1,2,3 LIN1,2,3
50% 50%
LIN1,2,3
LO1,2,3
HO1,2,3
50% 50%
DT DT
HO1,2,3 LO1,2,3
t
r
on
90% 90%
10% 10%
t
off
t
Figure 3. Deadtime Waveform Definitions Figure 4. Input/Output Switching Time Waveform
Definitions
LIN1,2,3
ITRIP
FAULT
LO1,2,3
50%
50% 50%
50%
50%
V
S0
CA-
V
CC
+
­V
SS
t
f
CAO
t
flt
t
itrip
Figure 5. Overcurrent Shutdown Switching Time
Waveform Definitions
t
fltclr
V
SS
Figure 6. Diagnostic Feedback Operational Amplifier
Circuit
6 www.irf.com
IR2130/IR2132
J)(S
(
)
15V
V
3V
0V
T1 T2
3V
0V
SR+ =
V
V
T1
CA­V
90%
10%
S0
+
-
SR- =
CC
V
SS
V
T2
Figure 7. Operational Amplifier Slew Rate
Measurement
15V
V
CC
-
CA-
+
V
S0
Measure V
CAO1
V
CAO2
CMRR = -20*LOG
V
SS
at VS0 = 0.1V
at V
= 5V
S0
(V
-0.1V) - (V
CAO1
CAO2
4.9V
CAO
50 pF
-5V)
CAO
(dB)
15V
20k
V
CC
+
­V
SS
V
VOS =
CAO
21
CAO
- 0.2V
0.2V
V
S0
CA-
+
1k
Figure 8. Operational Amplifier Input Offset Voltage
Measurement
V
CC
V
S0
0.2V
CA-
+
20k
1k
Measure V
PSRR = -20*LOG
+
­V
SS
at VCC = 10V
CAO1
V
at V
CAO2
= 20V
CC
V
CAO1
(10V) (21)
CAO
- V
CAO2
Figure 9. Operational Amplifier Common Mode
Rejection Ratio Measurements
Figure 10. Operational Amplifier Power Supply
Rejection Ratio Measurements
www.irf.com 7
IR2130/IR2132
y
y
J)(S
(
)
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
Turn-On Delay Time (µs)
0.30
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.50 Max
1.20 Typ.
0.90
0.60
T u rn-On Time (µs)
0.30
1.50
1.20
Max.
0.90
T
p.
0.60
Min.
Turn-On Delay Time (µs)
0.30
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 11B. T urn-On Time vs. Supply V oltageFigure 11A. Turn-On Time vs. Temperature
1.00
0.80
0.60
Max.
Typ.
0.40
Turn-Off Delay Time (µs)
Min.
0.20
0.00 0123456
Input Voltage (V)
Figure 11C. Turn-On Time vs. Voltage
1.00
0.80
Max.
0.60
T
p.
0.40
Min.
Turn-Off Delay Time (µs)
0.20
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 12B. T urn-Off Time vs. Supply Voltage
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 12A. T urn-Off Time vs. T emperature
1.50
1.20
0.90 Max
0.60
T u rn-Off Time (µs)
0.30
Typ Min.
0.00
0123456
Input Voltage (V)
Figure 12C. T urn-Off Time vs. Input V oltage
8 www.irf.com
IR2130/IR2132
y
y
y
J)(S
(
)
250
200
150
Max.
100
Turn-On Rise Time (ns)
Typ.
50
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
250
200
Max.
150
p.
T
100
Turn-On Rise Time (ns)
50
0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 13A. T urn-On Rise Time vs. Temperature Figure 13B. T urn-On Rise Time vs. V oltage
125
100
75
50
Max.
Turn-Off Fall Time (ns)
Typ.
25
125
100
75
Max.
50
T
p.
Turn-Off Fall Time (ns)
25
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 14A. T urn-Off Fall Time vs. Temperature Figure 14B. T urn-Off Fall Time vs. V oltage
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
ITRIP to Output Shutdown Delay Time (µs)
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.50
1.20
Max.
0.90
p.
T
0.60
Min.
0.30
ITRIP to Output Shutdown Delay Time (µs)
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 15B. ITRIP to Output Shutdown Time vs. VoltageFigure 15A. ITRIP to Output Shutdown Time vs.
Temperature
www.irf.com 9
IR2130/IR2132
y
y
J)(S
(
)
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
ITRIP to FAULT Indication Delay Time (µs)
0.00
-50 -25 0 25 50 75 100 125
Figure 16A. ITRIP to
Temperature (°C)
FAULT
Indication Time vs.
Temperature
25.0
20.0
15.0
Max.
Typ.
10.0
Min.
LIN1,2,3 to FAULT Clear Time (µs)
5.0
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
ITRIP to FAULT Indication Delay Time (µs)
0.00 10 12 14 16 18 20
Figure 16B. ITRIP to
25.0
20.0
15.0
Max.
p.
T
10.0
Min.
LIN1,2,3 to FAULT Clear Time (µs)
5.0
V
Supply Voltage (V)
CC
FAULT
Indication Time vs. Voltage
0.0
-50 -25 0 25 50 75 100 125
Figure 17A.
LIN1,2,3
Temperature (°C)
FAULT
to
Clear Time vs.
0.0 10 12 14 16 18 20
Figure 17B.
LIN1,2,3
V
Supply Voltage (V)
CC
FAULT
to
Clear Time vs. V oltage
Temperature
7.50
6.00
Max.
4.50
Typ.
3.00
Deadtime (µs)
Min.
1.50
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
7.50
6.00
4.50
Max.
3.00
Deadtime (µs)
T
p.
Min.
1.50
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 18A. Deadtime vs. Temperature (IR2130) Figure 18B. Deadtime vs. V oltage (IR2130)
10 www.irf.com
IR2130/IR2132
y
y
y
J)(S
(
)
2.50
2.00
1.50
Max.
Typ.
1.00
Deadtime (µs)
Min.
0.50
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
2.50
2.00
1.50
Max.
1.00
Deadtime (µs)
T
p.
Min.
0.50
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 18C. Deadtime vs. T emperature (IR2132) Figure 18D. Deadtime vs. V oltage (IR2132)
10.0
8.0
Typ.
6.0
Min.
4.0
Amplifier Slew Rate + (V/µs)
2.0
10.0
8.0
T
p.
6.0
Min.
4.0
Amplifier Slew Rate + (V/µs)
2.0
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 19A. Amplifier Slew Rate (+) vs. T emperature Figure 19B. Amplifier Slew Rate (+) vs. V oltage
5.00
4.00
Typ.
3.00
Min.
2.00
Amplifier Slew Rate - (V/µs)
1.00
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
5.00
4.00
T
p.
3.00
Min.
2.00
Amplifier Slew Rate - (V/µs)
1.00
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 20A. Amplifier Slew Rate (-) vs. T emperature Figure 20B. Amplifier Slew Rate (-) vs. V olta ge
www.irf.com 11
IR2130/IR2132
y
J)(S
(
)
5.00
4.00
3.00
Min.
2.00
Logic "0" Input Threshold (V)
1.00
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
5.00
4.00
3.00
Min.
2.00
Logic "0" Input Threshold (V)
1.00
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 21A. Logic “0” Input Threshold vs. T emperature Figure 20B. Logic “0” Input Threshold vs. V oltage
5.00
4.00
3.00
2.00
Logic "1" Input Threshold (V)
1.00
Max.
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
5.00
4.00
3.00
2.00
Logic "1" Input Threshold (V)
1.00
Max.
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 22A. Logic “1” Input Threshold vs. Temperature Figure 22B. Logic “1” Input Threshold vs. Voltage
750
Max.
600
Typ.
450
Min.
300
150
ITRIP Input Positive Going Threshold (mV)
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 23A. ITRIP Input Positive Going Threshold
vs. T emperature
750
Max.
600
T
p.
450
Min.
300
150
ITRIP Input Positive Going Threshold (mV)
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 23B. ITRIP Input Positive Going Threshold
vs. V oltage
12 www.irf.com
IR2130/IR2132
J)(S
(
)
1.00
0.80
0.60
0.40
High Level Output Voltage (V)
0.20
Max.
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.00
0.80
0.60
0.40
High Level Output Voltage (V)
0.20
Max.
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 24A. High Level Output vs. Temperature Figure 24B. High Level Output vs. Voltage
1.00
0.80
0.60
0.40
Low Level Output Voltage (V)
0.20
Max.
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.00
0.80
0.60
0.40
Low Level Output Voltage (V)
0.20
Max.
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 25A. Low Level Output vs. Temperature Figure 25B. Low Level Output vs. Voltage
500
400
300
200
Offset Supply Leakage Current (µA)
100
Max.
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 26A. Offset Supply Leakage Current
500
400
300
200
100
Offset Supply Leakage Current (µA)
Max.
0
0 100 200 300 400 500 600
V
Boost Voltage (V)
B
Figure 26B. Offset Supply Leakage Current vs. Voltage
vs. Temperature
www.irf.com 13
IR2130/IR2132
y
y
y
J)(S
(
)
100
80
60
40
Supply Current (µA)
BS
V
Max.
20
Typ.
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
100
80
60
40
Supply Current (µA)
BS
V
Max.
20
p.
T
0
10 12 14 16 18 20
V
Floating Supply Voltage (V)
BS
Figure 27A. VBS Supply Current vs. Temperature Figure 27B. VBS Supply Current vs. Voltage
10.0
8.0
6.0
4.0
Supply Current (mA)
Max.
CC
V
Typ.
2.0
10.0
8.0
6.0
4.0
Supply Current (mA)
CC
Max.
V
2.0
T
p.
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 28A. VCC Supply Current vs. Temperature Figure 28B. VCC Supply Current vs. Voltage
1.25
1.00
0.75
0.50
Max.
Typ.
Logic "1" Input Bias Current (mA)
0.25
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.25
1.00
0.75
0.50
Max.
T
p.
Logic "1" Input Bias Current (mA)
0.25
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 29A. Logic “1” Input Current vs. Temperature Figure 29A. Logic “1” Input Current vs. Voltage
14 www.irf.com
IR2130/IR2132
y
y
J)(S
(
)
1.25
1.00
0.75
0.50
Max.
Logic "0" Input Bias Current (mA)
0.25
Typ.
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
1.25
1.00
0.75
0.50
Logic "0" Input Bias Current (mA)
Max.
0.25
p.
T
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 30A. Logic “0” Input Current vs. Temperature Figure 30B. Logic “0” Input Current vs. Voltage
500
400
300
200
Max.
"High" ITRIP Bias Current (µA)
100
Typ.
500
400
300
200
Max.
"High" ITRIP Bias Current (µA)
100
p.
T
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 31A. “High” ITRIP Current vs. Temperature Figure 31B. “High” ITRIP Current vs. Voltage
250
200
150
100
Max.
"Low" ITRIP Bias Current (nA)
50
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
500
400
300
200
"Low" ITRIP Bias Current (µA)
Max.
100
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 32A. “Low” ITRIP Current vs. Temperature Figure 32B. “Low” ITRIP Current vs. Voltage
www.irf.com 15
IR2130/IR2132
y
J)(S
(
)
11.0
10.0
Max.
9.0
Typ.
8.0
Undervoltage Lockout + (V)
Min.
BS
V
7.0
6.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
11.0
10.0
9.0
Max.
8.0
Typ.
Undervoltage Lockout - (V)
BS
V
Min.
7.0
6.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 33. VBS Undervoltage (+) vs. Temperature Figure 34. VBS Undervoltage (-) vs. Temperature
11.0
10.0
Max.
Typ.
9.0
Min.
8.0
Undervoltage Lockout + (V)
CC
V
7.0
6.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
11.0
10.0
Max.
9.0
Typ.
Min.
8.0
Undervoltage Lockout - (V)
CC
V
7.0
6.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 35. VCC Undervoltage (+) vs. Temperature Figure 36. VCC Undervoltage (-) vs. Temperature
250
200
150
100
Max.
FAULT- Low On Resistance (ohms)
50
Typ.
0
-50 -25 0 25 50 75 100 125
Figure 37A.
Temperature (°C)
FAULT
Low On Resistance vs.
250
200
150
Max.
100
T
p.
FAULT- Low On Resistance (ohms)
50
0
10 12 14 16 18 20
Figure 37B.
FAULT
V
Supply Voltage (V)
CC
Low On Resistance vs. Voltage
Temperature
16 www.irf.com
IR2130/IR2132
y
y
y
y
J)(S
(
)
500
400
p.
T
300
Min.
200
Output Source Current (mA)
100
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
500
400
300
200
T
p.
Output Source Current (mA)
100
Min.
0
10 12 14 16 18 20
V
Supply Voltage (V)
BIAS
Figure 38A. Output Source Current vs. Temperature Figure 38B. Output Source Current vs. Voltage
750
T
p.
600
Min.
450
300
Output Sink Current (mA)
150
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
750
625
500
375
p.
T
250
Output Sink Current (mA)
Min.
125
0
10 12 14 16 18 20
Supply Voltage (V)
V
BIAS
Figure 39A. Output Sink Current vs. Temperature Figure 39B. Output Sink Current vs. Voltage
50
40
Max.
30
20
Amplifier Input Offset Voltage (mV)
10
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
50
40
30
Max.
20
Amplifier Input Offset Voltage (mV)
10
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 40A. Amplifier Input Offset vs. Temperature Figure 40B. Amplifier Input Offset vs. Voltage
www.irf.com 17
IR2130/IR2132
y
y
J)(S
(
)
10.0
8.0
6.0
Max.
4.0
CA- Input Bias Current (nA)
2.0
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
10.0
8.0
6.0
Max.
4.0
CA- Input Bias Current (nA)
2.0
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 41A. CA- Input Current vs. Temperature Figure 41B. CA- Input Current vs. Voltage
100
Typ.
80
Min.
60
40
Amplifier CMRR (dB)
20
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
100
p.
T
80
Min.
60
40
Amplifier CMRR (dB)
20
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 42A. Amplifier CMRR vs. Temperature Figure 42B. Amplifier CMRR vs. Voltage
100
80
Typ.
60
Min.
40
Amplifier PSRR (dB)
20
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 43A. Amplifier PSRR vs. Temperature
100
80
p.
T
60
Min.
40
Amplifier PSRR (dB)
20
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 43B. Amplifier PSRR vs. Voltage
18 www.irf.com
IR2130/IR2132
y
J)(S
(
)
6.00
5.70
5.40
Max.
Typ.
5.10
Min.
4.80
Amplifier High Level Output Voltage (V)
4.50
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 44A. Amplifier High Level Output vs.
Temperature
100
80
60
40
Max.
20
Amplifier Low Level Output Voltage (mV)
0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 45A. Amplifier Low Level Output vs.
Temperature
10.0
6.00
5.70
Max.
5.40
T
p.
5.10
Min.
4.80
Amplifier High Level Output Voltage (V)
4.50 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 44B. Amplifier High Level Output vs. Voltage
100
80
60
40
Max.
20
Amplifier Low Level Output Voltage (mV)
0
10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 45B. Amplifier Low Level Output vs. Voltage
10.0
8.0
6.0
Typ.
4.0
Min.
2.0
Amplifier Output Source Current (mA)
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 46A. Amplifier Output Source Current vs.
Temperature
8.0
6.0
4.0
Typ.
2.0
Amplifier Output Source Current (mA)
Min.
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 46B. Amplifier Output Source Current vs.
Voltage
www.irf.com 19
IR2130/IR2132
y
y
J)(S
(
)
5.00
4.00
3.00
Typ.
2.00
Min.
Amplifier Output Sink Current (mA)
1.00
0.00
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 47A. Amplifier Output Sink Current vs.
Temperature
15.0
12.0
9.0
Max.
6.0
Typ.
3.0
Output High Short Circuit Current (mA)
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 48A. Amplifier Output High Short Circuit
Current vs. Temperature
15.0
5.00
4.00
3.00
2.00
Typ.
Min.
Amplifier Output Sink Current (mA)
1.00
0.00 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 47B. Amplifier Output Sink Current vs. Voltage
15.0
12.0
9.0
6.0
Max.
3.0
Output High Short Circuit Current (mA)
T
p.
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 48B. Amplifier Output High Short Circuit
Current vs. Voltage
15.0
12.0
9.0
Max.
6.0
Typ.
3.0
Output Low Short Circuit Current (mA)
0.0
-50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 49A. Amplifier Output Low Short Circuit Current
vs. T emperature
12.0
9.0
6.0
Max.
3.0
Output Low Short Circuit Current (mA)
p.
T
0.0 10 12 14 16 18 20
V
Supply Voltage (V)
CC
Figure 49B. Amplifier Output Low Short Circuit Current
vs. V oltage
20 www.irf.com
IR2130/IR2132
0.0
-3.0
Typ.
-6.0
-9.0
Offset Supply Voltage (V)
S
V
-12.0
-15.0 10 12 14 16 18 20
Figure 50. Maximum VS Negative Offset vs. V
50
45
V
Floating Supply Voltage (V)
BS
50
480V
45
Supply V oltage
BS
J)(S
(
)
480V
40
35
30
Junction Temperature (°C)
25
20
1E+2 1E+3 1E+4 1E +5
Frequency (Hz)
Figure 51. IR2130/IR2132 TJ vs. Frequency (IRF820)
R
GATE
100
80
60
Junction Temperature (°C)
40
20
1E+2 1E+3 1E+4 1E+5
ΩΩ
= 33
, VCC = 15V
ΩΩ
Frequency (Hz)
Figure 53. IR2130/IR2132 TJ vs. Frequency (IRF840)
R
GATE
ΩΩ
= 15
, VCC = 15V
ΩΩ
480V 320V
160V
0V
320V
160V
0V
40
35
30
Junction Temperature (°C)
25
20
1E+2 1E+3 1E+4 1E +5
Frequency (Hz)
Figure 52. IR2130/IR2132 TJ vs. Frequency (IRF830)
R
GATE
140
120
100
80
60
Junction Temperature (°C)
40
20
1E+2 1E+3 1E+4 1E+5
ΩΩ
= 20
, VCC = 15V
ΩΩ
Frequency (Hz)
Figure 54. IR2130/IR2132 TJ vs. Frequency (IRF450)
R
GATE
ΩΩ
= 10
, VCC = 15V
ΩΩ
480V
320V
160V
0V
320V
160V 0V
www.irf.com 21
IR2130/IR2132
J)(S
(
)
120 110 100
90 80 70 60 50 40
Junction Temperature (°C)
30 20
1E+2 1E+3 1E+4 1E+5
Figure 55. IR2130J/IR2132J
TJ vs. Frequency (IRGPC20KD2)
R
GATE
Frequency (Hz)
ΩΩ
= 33
, VCC = 15V
ΩΩ
120 110 100
90 80 70 60 50 40 30
Junction Temperature (°C)
20
1E+2 1E+3 1E+4 1E+5
Figure 57. IR2130J/IR2132J
TJ vs. Frequency (IRGPC40KD2)
R
GATE
Frequency (Hz)
ΩΩ
= 15
, VCC = 15V
ΩΩ
480V 320V 160V 0V
480V 320V
160V
120 110 100
90 80 70 60 50 40
Junc tion Temp era ture (°C)
30 20
1E+2 1 E+3 1E+4 1E+5
Figure 56. IR2130J/IR2132J
TJ vs. Frequency (IRGPC30KD2)
R
120 110 100
90 80 70 60 50 40
Junction Temperature (°C)
30 20
1E+2 1E+3 1E+4 1E+5
Figure 58. IR2130J/IR2132J
TJ vs. Frequency (IRGPC50KD2)
R
GATE
GATE
= 10
Frequency (Hz)
ΩΩ
= 20
, VCC = 15V
ΩΩ
Frequency (Hz)
ΩΩ
, VCC = 15V
ΩΩ
480V
160
480V
320V
160V
22 www.irf.com
Case outlines
IR2130/IR2132
J)(S
(
)
28-Lead PDIP (wide body)
01-3024 02
01-304002
(MS-013AE)28-Lead SOIC (wide body)
01-6011
(MS-011AB)
01-6013
www.irf.com 23
IR2130/IR2132
Case outline
J)(S
(
)
NOTES
44-Lead PLCC w/o 12 leads
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 5/16/2001
24 www.irf.com
01-3004 02(mod.) (MS-018AC)
01-6009 00
Loading...