PD - 94755
AUTOMOTIVE MOSFET
IRFZ44VZ
IRFZ44VZS
IRFZ44VZL
Features
● Advanced Process Technology
● Ultra Low On-Resistance
● 175°C Operating Temperature
● Fast Switching
● Repetitive Avalanche Allowed up to Tjmax
G
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low onresistance per silicon area. Additional features of
this design are a 175°C junction operating temperature, fast switching speed and improved repetitive
avalanche rating . These features combine to make
this design an extremely efficient and reliable device
for use in Automotive applications and a wide variety
of other applications.
TO-220AB
IRFZ44VZ
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C
ID @ TC = 100°C
I
DM
PD @TC = 25°C
V
GS
E
AS (Thermally limited)
(Tested )
E
AS
I
AR
E
AR
T
J
T
STG
Continuous Drain Current, V
Continuous Drain Current, V
urrent
Power Dissipation W
Linear Derating Factor W/°C
Gate-to-Source Voltage V
se Avalanche Energy
se Avalanche Energy Tested Value
anche Current
epetitive Avalanche Energy
Operating Junction and
Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
@ 10V (Silicon Limited)
GS
@ 10V
GS
i
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat Greased S urface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount)
i
i
j
www.irf.com 1
HEXFET® Power MOSFET
D
V
= 60V
DSS
DS(on)
I
D
= 12mΩ
= 57A
TO-262
IRFZ44VZL
A
mJ
A
mJ
R
S
D2Pak
IRFZ44VZS
Max.
57
40
230
92
0.61
± 20
73
110
See Fig.12a, 12b, 15, 16
-55 to + 175
300 (1.6mm from case )
10 lbf
y
in (1.1Nym)
––– 1.64 °C/W
0.50 –––
––– 62
––– 40
8/25/03
IRFZ44VZS_L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
gfs Forward Transconductance 25 ––– ––– V
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff.
oss
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Drain-to-Source Breakdown Voltage 60 ––– ––– V
∆T
Breakdown Voltage Temp. Coefficient ––– 0.061 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 9.6 12
mΩ
Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
Total Gate Charge ––– 43 65
Gate-to-Source Charge ––– 11 ––– nC
Gate-to-Drain ("Miller") Charge ––– 18 –––
Turn-On Delay Time ––– 14 –––
Rise Time ––– 62 –––
Turn-Off Delay Time ––– 35 ––– ns
Fall Time ––– 38 –––
Internal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
Internal Source Inductanc e ––– 7.5 ––– f rom package
Input Capacitance ––– 1690 –––
Output Capacitance ––– 270 –––
Reverse Transfer Capacitance ––– 130 ––– pF
Output Capacitance ––– 1870 –––
Output Capacitance ––– 260 –––
Effective Output Capacitance ––– 510 –––
Parameter Min. Typ. Max. Units
Continuous Source Current ––– ––– 57
(Body Diode) A
Pulsed Source Current ––– ––– 230
(Body Diode)
Diode Forward Voltage ––– ––– 1.3 V
Reverse Recovery Time ––– 23 35 ns
Reverse Recovery Charge ––– 17 26 nC
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
c
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, I
V
= 10V, ID = 34A
GS
= 1mA
D
e
VDS = VGS, ID = 250µA
V
= 25V, ID = 34A
DS
= 60V, VGS = 0V
V
DS
V
= 60V, VGS = 0V, TJ = 125°C
DS
V
= 20V
GS
V
= -20V
GS
= 34A
I
D
V
= 48V
DS
VGS = 10V
e
VDD = 30V
I
= 34A
D
R
= 12 Ω
G
VGS = 10V
and center of die contact
e
D
G
S
VGS = 0V
V
= 25V
DS
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
V
= 0V, VDS = 48V, ƒ = 1.0MHz
GS
V
= 0V, VDS = 0V to 48V
GS
f
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
= 25°C, IS = 34A, VGS = 0V
T
J
TJ = 25°C, IF = 34A, VDD = 30V
di/dt = 100A/µs
e
e
2 www.irf.com
IRFZ44VZS_L
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
-
o
t
-
n
i
a
r
D
,
I
1000
TOP 15V
100
BOTTOM 4.5V
10
D
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
60µs PULSE WIDTH
Tj = 25°C4.5V
1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1000
)
Α
(
t
n
e
r
r
100
u
C
e
c
r
u
o
S
-
o
t
-
n
i
a
r
D
,
I
D
10
TJ = 175°C
TJ = 25°C
V
DS
= 25V
60µs PULSE WIDTH
1
4.0 5.0 6.0 7.0 8.0 9.0
VGS, Gate-to-Source Voltage (V)
)
A
(
t
n
e
r
r
u
C
e
c
r
u
o
S
-
o
t
-
n
i
a
r
D
,
I
1000
TOP 15V
100
BOTTOM 4.5V
10
D
VGS
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
60µs PULSE WIDTH
Tj = 175°C
1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
60
)
S
(
50
e
c
n
a
t
c
40
u
d
n
o
c
s
30
n
a
r
T
d
r
a
20
w
r
o
F
,
s
10
f
G
V
380µs PULSE WIDTH
0
0 102030405060
ID, Drain-to-Source Current (A)
DS
TJ = 175°C
TJ = 25°C
= 15V
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.irf.com 3
IRFZ44VZS_L
3000
2500
)
F
2000
p
(
e
c
n
a
t
1500
i
c
a
p
a
C
1000
,
C
500
V
= 0V, f = 1 MHZ
GS
C
= C
iss
rss
oss
= C
= C
gs
gd
ds
C
C
Ciss
Coss
+ Cgd, C
+ C
Crss
0
1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
)
A
(
t
100.0
n
e
r
r
u
C
n
i
a
r
10.0
D
e
s
r
e
v
e
R
,
D
S
I
TJ = 175°C
1.0
TJ = 25°C
0.1
0.2 0.6 1.0 1.4 1.8
VSD, Source-toDrain Voltage (V)
20
SHORTED
ds
gd
ID= 34A
)
V
(
16
e
g
a
t
l
o
V
12
e
c
r
u
o
S
-
o
8
t
-
e
t
a
G
,
S
4
G
V
VDS= 48V
VDS= 30V
VDS= 12V
FOR TEST CIRCUIT
SEE FIGURE 13
0
0 102030405060
Q
Total Gate Charge (nC)
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
V
GS
= 0V
1000
)
A
(
t
100
n
e
r
r
u
C
e
c
r
u
10
o
S
-
o
t
-
n
i
a
r
D
1
,
D
I
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1 10 100 1000
V
OPERATION IN T HIS AREA
LIMITED BY RDS(on)
100µsec
1msec
10msec
, Drain-toSource Voltage (V)
DS
Fig 7. Typical Source-Drain Diode
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com