SMPS MOSFET
PD - 94357
IRFB52N15D
IRFS52N15D
IRFSL52N15D
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
V
DSS
R
DS(on)
max I
150V 0.032Ω 60A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
TO-220AB
IRFB52N15D
D2Pak
IRFS52N15D
TO-262
IRFSL52N15D
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 60
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 43 A
I
DM
PD @TA = 25°C Power Dissipation 3.8 W
PD @TC = 25°C Power Dissipation 320
V
GS
dv/dt Peak Diode Recovery dv/dt 5.5 V/ns
T
J
T
STG
Pulsed Drain Current 240
Linear Derating Factor 2.1 W/°C
Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
D
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
R
θJA
Notes through are on page 11
Junction-to-Case ––– 0.47
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
Junction-to-Ambient ––– 62
Junction-to-Ambient ––– 40
www.irf.com 1
12/12/01
IRFB/IRFS/IRFSL52N15D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 550 ––– VGS = 0V, VDS = 0V to 120V
oss
Drain-to-Source Breakdown Voltage 150 ––– ––– VVGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.16 ––– V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance ––– ––– 0.032 Ω VGS = 10V, ID = 36A
Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage ––– ––– 100 V
Gate-to-Source Reverse Leakage ––– ––– -100
––– ––– 25
––– ––– 250 VDS = 120V, VGS = 0V, TJ = 150°C
µA
nA
= 150V, VGS = 0V
V
DS
= 30V
GS
V
= -30V
GS
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 19 ––– ––– SVDS = 50V, ID = 36A
Total Gate Charge ––– 79 120 ID = 36A
Gate-to-Source Charge ––– 25 37 nC VDS = 120V
Gate-to-Drain ("Miller") Charge ––– 34 51 VGS = 10V,
Turn-On Delay Time ––– 16 ––– VDD = 75V
Rise Time ––– 47 ––– ID = 36A
Turn-Off Delay Time ––– 28 ––– RG = 2.5Ω
ns
Fall Time ––– 25 ––– VGS = 10V
Input Capacitance ––– 2770 ––– VGS = 0V
Output Capacitance ––– 590 ––– VDS = 25V
Reverse Transfer Capacitance ––– 110 ––– pF ƒ = 1.0MHz
Output Capacitance ––– 3940 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 260 ––– VGS = 0V, VDS = 120V, ƒ = 1.0MHz
Avalanche Characteristics
Parameter Typ. Max. Units
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy ––– 470 mJ
Avalanche Current ––– 36 A
Repetitive Avalanche Energy ––– 32 mJ
Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
60
240
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 36A, VGS = 0V
Reverse Recovery Time ––– 140 210 nS TJ = 25°C, IF = 36A
Reverse RecoveryCharge ––– 780 1170 nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2 www.irf.com
D
S
IRFB/IRFS/IRFSL52N15D
1000
100
10
1
, Drain-to-Source Current (A)
D
I
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
5.0V
300µs PULSE WIDTH
0.1
0.1 1 10 100
Tj = 25°C
VDS, Drain-to-Source Voltage (V)
1000.00
1000
100
10
1
, Drain-to-Source Current (A)
D
I
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
5.0V
300µs PULSE WIDTH
Tj = 175°C
0.1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.0
60A
I =
D
)
(Α
100.00
10.00
, Drain-to-Source Current
D
I
TJ = 25°C
1.00
5.0 7.0 9.0 11.0 13.0 15.0
TJ = 175°C
V
= 15V
DS
300µs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
2.5
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature
J
Fig 4. Normalized On-Resistance
V =
10V
GS
°
C
Vs. Temperature
www.irf.com 3
IRFB/IRFS/IRFSL52N15D
100000
10000
V
= 0V, f = 1 MHZ
GS
C
= C
iss
gs
C
= C
rss
gd
C
= C
ds
+ C
oss
+ Cgd, C
gd
Ciss
1000
Coss
C, Capacitance(pF)
100
10
1 10 100 1000
Crss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.00
SHORTED
ds
12
D
I =
36A
10
7
5
2
GS
V , Gate-to-Source Voltage (V)
0
0 20 40 60 80 100
V = 120V
DS
V = 75V
DS
V = 30V
DS
Q , Total Gate Charge (nC
G
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100.00
TJ = 175°C
100
100µsec
10.00
10
1msec
TJ = 25°C
, Reverse Drain Current (A)
1.00
SD
I
0.10
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
1
, Drain-to-Source Current (A)
D
I
0.1
Tc = 25°C
Tj = 175°C
Single Pulse
V
= 0V
GS
1 10 100 1000
V
, Drain-toSource Voltage (V)
DS
Fig 8. Maximum Safe Operating Area
10msec
Forward Voltage
4 www.irf.com