International Rectifier IRFSL33N15D, IRFS33N15D, IRFB33N15D Datasheet

SMPS MOSFET
PD- 93903
IRFB33N15D
IRFS33N15D
IRFSL33N15D
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
V
DSS
R
DS(on)
max I
150V 0.056 33A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
TO-220AB
IRFB33N15D
D2Pak
IRFS33N15D
TO-262
IRFSL33N15D
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 33 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 24 A I
DM
PD @TA = 25°C Power Dissipation 3.8 W PD @TC = 25°C Power Dissipation 170
V
GS
dv/dt Peak Diode Recovery dv/dt 4.4 V/ns T
J
T
STG
Pulsed Drain Current 130
Linear Derating Factor 1.1 W/°C Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
D
°C
Typical SMPS Topologies
l Telecom 48V input Active Clamp Forward Converter
Notes through are on page 11
www.irf.com 1
6/29/00
IRFB/IRFS/IRFSL33N15D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 320 – –– VGS = 0V, VDS = 0V to 120V
oss
Avalanche Characteristics
E
AS
I
AR
E
AR
Thermal Resistance
R
θJC
R
θCS
R
θJA
R
θJA
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
2 www.irf.com
Drain-to-Source Breakdown Voltage 150 ––– ––– V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient
J
––– 0.18 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– ––– 0.056 VGS = 10V, ID = 20A Gate Threshold Voltage 3.0 ––– 5.5 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 25
––– ––– 250 VDS = 120V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 10 0 VGS = 30V Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 150V, VGS = 0V
µA
nA
VGS = -30V
Parameter Min. Typ. Max. Units Conditions Forward Transconductance 14 ––– ––– S VDS = 50V, ID = 20A Total Gate Charge ––– 60 9 0 ID = 20A Gate-to-Source Charge ––– 17 26 nC VDS = 120V Gate-to-Drain ("Miller") Charge ––– 27 41 VGS = 10V,  Turn-On Delay Time ––– 13 ––– VDD = 75V Rise Time ––– 38 ––– ID = 20A Turn-Off Delay Time ––– 23 ––– RG = 3.6
ns
Fall Time ––– 21 ––– VGS = 10V Input Capacitance ––– 2020 ––– VGS = 0V Output Capacitance ––– 400 –– – VDS = 25V Reverse Transfer Capacitance ––– 91 ––– pF ƒ = 1.0MHz Output Capacitance ––– 2440 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 180 –– – VGS = 0V, VDS = 120V, ƒ = 1.0MHz
Parameter Typ. Max. Units
Single Pulse Avalanche Energy ––– 330 mJ Avalanche Current ––– 20 A Repetitive Avalanche Energy ––– 17 mJ
Parameter Typ. Max. Units
Junction-to-Case ––– 0.90 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62 Junction-to-Ambient ––– 40
Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode) 
––– –––
––– –––
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 20A, VGS = 0V Reverse Recovery Time ––– 150 ––– ns TJ = 25°C, IF = 20A Reverse RecoveryCharge ––– 920 ––– nC di/dt = 100A/µs Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
33
130
showing the
A
p-n junction diode.
G
D
S
IRFB/IRFS/IRFSL33N15D
1000
100
10
1
D
I , Drain-to-Source Current (A)
TOP
BOTTOM
VGS 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
20µs PULSE WIDTH T = 25 C
0.1
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
1000
J
1000
100
10
D
I , Drain-to-Source Current (A)
°
1
0.1 1 10 100
VGS
TOP
15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH T = 175 C
J
V , Drain-to-Source Voltage (V)
DS
°
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.0
I =
D
33A
2.5
100
°
T = 175 C
J
10
°
T = 25 C
1
D
I , Drain-to-Source Current (A)
0.1 4 5 6 7 8 9 10 11 12
J
V = 50V
DS
20µs PULSE WIDTH
V , Gate-to-Source Voltage (V)
GS
Fig 3. Typical Transfer Characteristics
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3
IRFB/IRFS/IRFSL33N15D
100000
10000
V
= 0V, f = 1 MHZ
GS
C
= C
iss
gs
C
= C
rss
gd
C
= C
ds
+ C
oss
+ Cgd, C
gd
Ciss
1000
Coss
C, Capacitance(pF)
100
10
1 10 100 1000
Crss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
SHORTED
ds
20
I =
20A
D
V = 120V
DS
V = 75V
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
DS
V = 30V
DS
FOR TEST CIRCUIT
0
0 20 40 60 80 100
Q , Total Gate Charge (nC)
G
SEE FIGURE
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
13
100
°
T = 175 C
J
10
°
T = 25 C
1
SD
I , Reverse Drain Current (A)
0.1
0.2 0.4 0.6 0.8 1.0 1.2 1.4
V ,Source-to-Drain Voltage (V)
SD
J
V = 0 V
GS
Fig 7. Typical Source-Drain Diode
100
10
D
I , Drain Current (A)I , Drain Current (A)
°
= 25 C
C
T T= 175 C Single Pulse
1
1 10 100 1000
°
J
V , Drain-to-Source Voltage (V)
DS
Fig 8. Maximum Safe Operating Area
10us
100us
1ms
10ms
Forward Voltage
4 www.irf.com
Loading...
+ 7 hidden pages