International Rectifier IRFS23N15D, IRFB23N15D, IRFSL23N15D Datasheet

SMPS MOSFET
PD - 93894A
IRFB23N15D
IRFS23N15D
IRFSL23N15D
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
V
DSS
R
DS(on)
max I
150V 0.090 23A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
TO-220AB
IRFB23N15D
D2Pak
IRFS23N15D
TO-262
IRFSL23N15D
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 23 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 17 A I
DM
PD @TA = 25°C Power Dissipation 3.8 W PD @TC = 25°C Power Dissipation 136
V
GS
dv/dt Peak Diode Recovery dv/dt 4.1 V/ns T
J
T
STG
Pulsed Drain Current 92
Linear Derating Factor 0.9 W/°C Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
D
°C
Typical SMPS Topologies
l Telecom 48V input DC-DC Active Clamp Reset Forward Converter
Notes through are on page 11
www.irf.com 1
6/29/00
IRFB/IRFS/IRFSL23N15D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 210 ––– VGS = 0V, VDS = 0V to 120V
oss
Avalanche Characteristics
E
AS
I
AR
E
AR
Thermal Resistance
R
θJC
R
θCS
R
θJA
R
θJA
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
2 www.irf.com
Drain-to-Source Breakdown Voltage 150 ––– – –– V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient
J
––– 0.18 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– ––– 0.090 VGS = 10V, ID = 14A Gate Threshold Voltage 3.0 ––– 5.5 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 25
––– ––– 250 VDS = 120V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 100 VGS = 30V Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 150V, VGS = 0V
µA
nA
VGS = -30V
Parameter Min. Typ. Max. Units Conditions Forward Transconductance 11 ––– ––– S VDS = 25V, ID = 14A Total Gate Charge ––– 37 5 6 ID = 14A Gate-to-Source Charge ––– 9.6 14 nC VDS = 120V Gate-to-Drain ("Miller") Charge ––– 19 29 VGS = 10V, Turn-On Delay Time ––– 10 ––– VDD = 75V Rise Time ––– 32 ––– ID = 14A Turn-Off Delay Time ––– 18 ––– RG = 5.1
ns
Fall Time ––– 8.4 ––– VGS = 10V Input Capacitance ––– 1200 ––– VGS = 0V Output Capacitance ––– 260 ––– VDS = 25V Reverse Transfer Capacitance ––– 65 –– – pF ƒ = 1.0MHz Output Capacitance ––– 1520 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 120 ––– VGS = 0V, VDS = 120V, ƒ = 1.0MHz
Parameter Typ. Max. Units
Single Pulse Avalanche Energy ––– 260 mJ Avalanche Current ––– 14 A Repetitive Avalanche Energy ––– 13.6 mJ
Parameter Typ. Max. Units
Junction-to-Case ––– 1.1 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62 Junction-to-Ambient ––– 40
Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 14A, VGS = 0V Reverse Recovery Time ––– 150 220 ns TJ = 25°C, IF = 14A Reverse RecoveryCharge ––– 0.8 1.2 µC di/dt = 100A/µs Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
92
23
showing the
A
p-n junction diode.
G
D
S
IRFB/IRFS/IRFSL23N15D
100
10
1
0.1
D
I , Drain-to-Source Current (A)
0.01
0.1 1 10 100
100
VGS
TOP
15V 12V 10V
8.0V
7.0V
6.0V
5.5V
BOTTOM
5.0V
5.0V
20µs PULSE WIDTH T = 25 C
J
V , Drain-to-Source Voltage (V)
DS
°
100
10
D
I , Drain-to-Source Current (A)
1
0.1 1 10 100
VGS
TOP
15V 12V 10V
8.0V
7.0V
6.0V
5.5V
BOTTOM
5.0V
5.0V
20µs PULSE WIDTH T = 175 C
J
V , Drain-to-Source Voltage (V)
DS
°
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.5
I =
D
23A
°
T = 175 C
J
10
°
T = 25 C
1
D
I , Drain-to-Source Current (A)
0.1 4 5 6 7 8 9 10 11 12
J
V = 50V
DS
20µs PULSE WIDTH
V , Gate-to-Source Voltage (V)
GS
Fig 3. Typical Transfer Characteristics
3.0
2.5
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3
IRFB/IRFS/IRFSL23N15D
10000
1000
V
= 0V, f = 1 MHZ
GS
C
= C
iss
gs
C
= C
rss
gd
C
= C
ds
+ C
oss
Ciss
+ Cgd, C
gd
ds
Coss
100
C, Capacitance(pF)
Crss
10
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
SHORTED
20
I =
14A
D
V = 120V
DS
V = 75V
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
DS
V = 30V
DS
FOR TEST CIRCUIT
0
0 10 20 30 40 50 60
Q , Total Gate Charge (nC)
G
SEE FIGURE
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
13
10
°
T = 175 C
J
°
T = 25 C
1
SD
I , Reverse Drain Current (A)
0.1
0.2 0.4 0.6 0.8 1.0 1.2 1.4
V ,Source-to-Drain Voltage (V)
SD
J
V = 0 V
GS
Fig 7. Typical Source-Drain Diode
100
10us
100us
10
D
I , Drain Current (A)I , Drain Current (A)
1ms
°
= 25 C
C
T T= 175 C Single Pulse
1
1 10 100 1000
°
J
V , Drain-to-Source Voltage (V)
DS
10ms
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Loading...
+ 7 hidden pages