SMPS MOSFET
PD- 93903
IRFB33N15D
IRFS33N15D
IRFSL33N15D
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
V
DSS
R
DS(on)
max I
150V 0.056Ω 33A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
TO-220AB
IRFB33N15D
D2Pak
IRFS33N15D
TO-262
IRFSL33N15D
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 33
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 24 A
I
DM
PD @TA = 25°C Power Dissipation 3.8 W
PD @TC = 25°C Power Dissipation 170
V
GS
dv/dt Peak Diode Recovery dv/dt 4.4 V/ns
T
J
T
STG
Pulsed Drain Current 130
Linear Derating Factor 1.1 W/°C
Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
D
°C
Typical SMPS Topologies
l Telecom 48V input Active Clamp Forward Converter
Notes through are on page 11
www.irf.com 1
6/29/00
IRFB/IRFS/IRFSL33N15D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 320 – –– VGS = 0V, VDS = 0V to 120V
oss
Avalanche Characteristics
E
AS
I
AR
E
AR
Thermal Resistance
R
θJC
R
θCS
R
θJA
R
θJA
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
2 www.irf.com
Drain-to-Source Breakdown Voltage 150 ––– ––– V VGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.18 ––– V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance ––– ––– 0.056 Ω VGS = 10V, ID = 20A
Gate Threshold Voltage 3.0 ––– 5.5 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 25
––– ––– 250 VDS = 120V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 10 0 VGS = 30V
Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 150V, VGS = 0V
µA
nA
VGS = -30V
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 14 ––– ––– S VDS = 50V, ID = 20A
Total Gate Charge ––– 60 9 0 ID = 20A
Gate-to-Source Charge ––– 17 26 nC VDS = 120V
Gate-to-Drain ("Miller") Charge ––– 27 41 VGS = 10V,
Turn-On Delay Time ––– 13 ––– VDD = 75V
Rise Time ––– 38 ––– ID = 20A
Turn-Off Delay Time ––– 23 ––– RG = 3.6Ω
ns
Fall Time ––– 21 ––– VGS = 10VΩ
Input Capacitance ––– 2020 ––– VGS = 0V
Output Capacitance ––– 400 –– – VDS = 25V
Reverse Transfer Capacitance ––– 91 ––– pF ƒ = 1.0MHz
Output Capacitance ––– 2440 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 180 –– – VGS = 0V, VDS = 120V, ƒ = 1.0MHz
Parameter Typ. Max. Units
Single Pulse Avalanche Energy ––– 330 mJ
Avalanche Current ––– 20 A
Repetitive Avalanche Energy ––– 17 mJ
Parameter Typ. Max. Units
Junction-to-Case ––– 0.90
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
Junction-to-Ambient ––– 62
Junction-to-Ambient ––– 40
Parameter Min. Typ. Max. Units Conditions
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 20A, VGS = 0V
Reverse Recovery Time ––– 150 ––– ns TJ = 25°C, IF = 20A
Reverse RecoveryCharge ––– 920 ––– nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
33
130
showing the
A
p-n junction diode.
G
D
S
IRFB/IRFS/IRFSL33N15D
1000
100
10
1
D
I , Drain-to-Source Current (A)
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
20µs PULSE WIDTH
T = 25 C
0.1
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
1000
J
1000
100
10
D
I , Drain-to-Source Current (A)
°
1
0.1 1 10 100
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH
T = 175 C
J
V , Drain-to-Source Voltage (V)
DS
°
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.0
I =
D
33A
2.5
100
°
T = 175 C
J
10
°
T = 25 C
1
D
I , Drain-to-Source Current (A)
0.1
4 5 6 7 8 9 10 11 12
J
V = 50V
DS
20µs PULSE WIDTH
V , Gate-to-Source Voltage (V)
GS
Fig 3. Typical Transfer Characteristics
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3
IRFB/IRFS/IRFSL33N15D
100000
10000
V
= 0V, f = 1 MHZ
GS
C
= C
iss
gs
C
= C
rss
gd
C
= C
ds
+ C
oss
+ Cgd, C
gd
Ciss
1000
Coss
C, Capacitance(pF)
100
10
1 10 100 1000
Crss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
SHORTED
ds
20
I =
20A
D
V = 120V
DS
V = 75V
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
DS
V = 30V
DS
FOR TEST CIRCUIT
0
0 20 40 60 80 100
Q , Total Gate Charge (nC)
G
SEE FIGURE
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
13
100
°
T = 175 C
J
10
°
T = 25 C
1
SD
I , Reverse Drain Current (A)
0.1
0.2 0.4 0.6 0.8 1.0 1.2 1.4
V ,Source-to-Drain Voltage (V)
SD
J
V = 0 V
GS
Fig 7. Typical Source-Drain Diode
100
10
D
I , Drain Current (A)I , Drain Current (A)
°
= 25 C
C
T T= 175 C
Single Pulse
1
1 10 100 1000
°
J
V , Drain-to-Source Voltage (V)
DS
Fig 8. Maximum Safe Operating Area
10us
100us
1ms
10ms
Forward Voltage
4 www.irf.com