International Rectifier IRFS23N20D, IRFB23N20D, IRFSL23N20D Datasheet

SMPS MOSFET
PD- 93904A
IRFB23N20D
IRFS23N20D
IRFSL23N20D
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
V
DSS
R
DS(on)
max I
200V 0.10 24A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
TO-220AB
IRFB23N20D
D2Pak
IRFS23N20D
TO-262
IRFSL23N20D
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 24 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 17 A I
DM
PD @TA = 25°C Power Dissipation 3.8 W PD @TC = 25°C Power Dissipation 170
V
GS
dv/dt Peak Diode Recovery dv/dt 3.3 V/ns T
J
T
STG
Pulsed Drain Current 96
Linear Derating Factor 1.1 W/°C Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
°C
D
Typical SMPS Topologies
l Telecom 48V input Forward Converter
Notes through are on page 11
www.irf.com 1
4/26/00
IRFB/IRFS/IRFSL23N20D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 220 ––– VGS = 0V, VDS = 0V to 160V
oss
Avalanche Characteristics
E
AS
I
AR
E
AR
Thermal Resistance
R
θJC
R
θCS
R
θJA
R
θJA
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
2 www.irf.com
Drain-to-Source Breakdown Voltage 200 ––– ––– V VGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient
J
––– 0.26 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– ––– 0.10 VGS = 10V, ID = 14A Gate Threshold Voltage 3.0 ––– 5.5 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 25
––– ––– 250 VDS = 160V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 100 VGS = 30V Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 200V, VGS = 0V
µA
nA
VGS = -30V
Parameter Min. Typ. Max. Units Conditions Forward Transconductance 13 ––– ––– S VDS = 50V, ID = 14A Total Gate Charge ––– 57 86 ID = 14A Gate-to-Source Charge ––– 14 21 nC VDS = 160V Gate-to-Drain ("Miller") Charge ––– 27 40 VGS = 10V,  Turn-On Delay Time ––– 14 ––– VDD = 100V Rise Time ––– 32 ––– ID = 14A Turn-Off Delay Time ––– 26 ––– RG = 4.6
ns
Fall Time ––– 16 ––– VGS = 10V Input Capacitance ––– 1960 – –– VGS = 0V Output Capacitance ––– 300 ––– VDS = 25V Reverse Transfer Capacitance ––– 65 ––– pF ƒ = 1.0MHz Output Capacitance ––– 2200 – –– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 120 ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz
Parameter Typ. Max. Units
Single Pulse Avalanche Energy ––– 250 mJ Avalanche Current ––– 14 A Repetitive Avalanche Energy ––– 17 mJ
Parameter Typ. Max. Units
Junction-to-Case ––– 0.90 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 62 Junction-to-Ambient ––– 40
Parameter Min. Typ. Max. Units Conditions Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode) 
––– –––
––– –––
Diode Forward Voltage ––– ––– 1. 3 V TJ = 25°C, IS = 14A, VGS = 0V Reverse Recovery Time ––– 200 300 ns TJ = 25°C, IF = 14A Reverse RecoveryCharge ––– 1300 1940 nC di/dt = 100A/µs Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
96
24
showing the
A
p-n junction diode.
G
D
S
IRFB/IRFS/IRFSL23N20D
100
10
1
TOP
BOTTOM
VGS 15V 12V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
5.0V
0.1
D
I , Drain-to-Source Current (A)
20µs PULSE WIDTH
°
T = 25 C
0.01
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
100
°
T = 175 C
J
J
100
10
TOP
BOTTOM
VGS 15V 12V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
5.0V
D
I , Drain-to-Source Current (A)
20µs PULSE WIDTH
°
T = 175 C
1
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
J
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.5
3.0
I =
D
24A
10
°
T = 25 C
J
1
D
I , Drain-to-Source Current (A)
V = 50V
DS
0.1
5.0 6.0 7.0 8.0 9.0 10.0
V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
2.5
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3
IRFB/IRFS/IRFSL23N20D
100000
10000
V
= 0V, f = 1 MHZ
GS
C
= C
iss
gs
C
= C
rss
gd
C
= C
ds
+ C
oss
+ Cgd, C
gd
Ciss
1000
Coss
C, Capacitance (pF)
100
10
1 10 100 1000
Crss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
SHORTED
ds
20
I =
14A
D
V = 160V
DS
V = 100V
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
DS
V = 40V
DS
FOR TEST CIRCUIT
0
0 20 40 60 80 100
Q , Total Gate Charge (nC)
G
SEE FIGURE
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
13
°
T = 175 C
J
10
°
T = 25 C
J
1
SD
I , Reverse Drain Current (A)
V = 0 V
0.1
0.2 0.5 0.8 1.1 1.4
V ,Source-to-Drain Voltage (V)
SD
GS
Fig 7. Typical Source-Drain Diode
100
10
D
I , Drain Current (A)I , Drain Current (A)
°
= 25 C
C
T T= 175 C Single Pulse
1
1 10 100 1000
°
J
V , Drain-to-Source Voltage (V)
DS
10us
100us
1ms
10ms
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com
Loading...
+ 7 hidden pages