SMPS MOSFET
PD- 93904A
IRFB23N20D
IRFS23N20D
IRFSL23N20D
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
V
DSS
R
DS(on)
max I
200V 0.10Ω 24A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
TO-220AB
IRFB23N20D
D2Pak
IRFS23N20D
TO-262
IRFSL23N20D
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 24
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 17 A
I
DM
PD @TA = 25°C Power Dissipation 3.8 W
PD @TC = 25°C Power Dissipation 170
V
GS
dv/dt Peak Diode Recovery dv/dt 3.3 V/ns
T
J
T
STG
Pulsed Drain Current 96
Linear Derating Factor 1.1 W/°C
Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
°C
D
Typical SMPS Topologies
l Telecom 48V input Forward Converter
Notes through are on page 11
www.irf.com 1
4/26/00
IRFB/IRFS/IRFSL23N20D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 220 ––– VGS = 0V, VDS = 0V to 160V
oss
Avalanche Characteristics
E
AS
I
AR
E
AR
Thermal Resistance
R
θJC
R
θCS
R
θJA
R
θJA
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
2 www.irf.com
Drain-to-Source Breakdown Voltage 200 ––– ––– V VGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.26 ––– V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance ––– ––– 0.10 Ω VGS = 10V, ID = 14A
Gate Threshold Voltage 3.0 ––– 5.5 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 25
––– ––– 250 VDS = 160V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 30V
Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 200V, VGS = 0V
µA
nA
VGS = -30V
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 13 ––– ––– S VDS = 50V, ID = 14A
Total Gate Charge ––– 57 86 ID = 14A
Gate-to-Source Charge ––– 14 21 nC VDS = 160V
Gate-to-Drain ("Miller") Charge ––– 27 40 VGS = 10V,
Turn-On Delay Time ––– 14 ––– VDD = 100V
Rise Time ––– 32 ––– ID = 14A
Turn-Off Delay Time ––– 26 ––– RG = 4.6Ω
ns
Fall Time ––– 16 ––– VGS = 10V
Input Capacitance ––– 1960 – –– VGS = 0V
Output Capacitance ––– 300 ––– VDS = 25V
Reverse Transfer Capacitance ––– 65 ––– pF ƒ = 1.0MHz
Output Capacitance ––– 2200 – –– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 120 ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz
Parameter Typ. Max. Units
Single Pulse Avalanche Energy ––– 250 mJ
Avalanche Current ––– 14 A
Repetitive Avalanche Energy ––– 17 mJ
Parameter Typ. Max. Units
Junction-to-Case ––– 0.90
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
Junction-to-Ambient ––– 62
Junction-to-Ambient ––– 40
Parameter Min. Typ. Max. Units Conditions
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
Diode Forward Voltage ––– ––– 1. 3 V TJ = 25°C, IS = 14A, VGS = 0V
Reverse Recovery Time ––– 200 300 ns TJ = 25°C, IF = 14A
Reverse RecoveryCharge ––– 1300 1940 nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
96
24
showing the
A
p-n junction diode.
G
D
S
IRFB/IRFS/IRFSL23N20D
100
10
1
TOP
BOTTOM
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
5.0V
0.1
D
I , Drain-to-Source Current (A)
20µs PULSE WIDTH
°
T = 25 C
0.01
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
100
°
T = 175 C
J
J
100
10
TOP
BOTTOM
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
5.0V
D
I , Drain-to-Source Current (A)
20µs PULSE WIDTH
°
T = 175 C
1
0.1 1 10 100
V , Drain-to-Source Voltage (V)
DS
J
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.5
3.0
I =
D
24A
10
°
T = 25 C
J
1
D
I , Drain-to-Source Current (A)
V = 50V
DS
0.1
5.0 6.0 7.0 8.0 9.0 10.0
V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
2.5
2.0
1.5
(Normalized)
1.0
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3
IRFB/IRFS/IRFSL23N20D
100000
10000
V
= 0V, f = 1 MHZ
GS
C
= C
iss
gs
C
= C
rss
gd
C
= C
ds
+ C
oss
+ Cgd, C
gd
Ciss
1000
Coss
C, Capacitance (pF)
100
10
1 10 100 1000
Crss
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
SHORTED
ds
20
I =
14A
D
V = 160V
DS
V = 100V
16
12
8
4
GS
V , Gate-to-Source Voltage (V)
DS
V = 40V
DS
FOR TEST CIRCUIT
0
0 20 40 60 80 100
Q , Total Gate Charge (nC)
G
SEE FIGURE
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
13
°
T = 175 C
J
10
°
T = 25 C
J
1
SD
I , Reverse Drain Current (A)
V = 0 V
0.1
0.2 0.5 0.8 1.1 1.4
V ,Source-to-Drain Voltage (V)
SD
GS
Fig 7. Typical Source-Drain Diode
100
10
D
I , Drain Current (A)I , Drain Current (A)
°
= 25 C
C
T T= 175 C
Single Pulse
1
1 10 100 1000
°
J
V , Drain-to-Source Voltage (V)
DS
10us
100us
1ms
10ms
Fig 8. Maximum Safe Operating Area
Forward Voltage
4 www.irf.com