PD - 9.1665
PRELIMINARY
HEXFET® Power MOSFET
l Surface Mount (IRFBF20S)
l Low-profile through-hole (IRFBF20L)
l Available in Tape & Reel (IRFBF20S)
l Dynamic dv/dt Rating
l 150°C Operating Temperature
l Fast Switching
l Fully Avalanche Rated
Description
Third generation HEXFETs from international Rectifier provide the designer with the
best combination of fast switching, ruggedized device design, low on-resistance and
cost-effectiveness.
2
The D
Pak is a surface mount power package capable of the accommodatingdie sizes
up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D
current applications because of its low internal connection resistance and can
dissipate up to 2.0W in a typical surface mount application. The through-hole version
(IRFBF20L) is available for low-profile applications.
G
2
Pak is suitable for high
IRFBF20S/L
D
S
V
R
2
D Pa k
DSS
DS(on)
= 1.7A
I
D
= 900V
= 8.0Ω
TO-262
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 1.7
@ TC = 100°C Continuous Drain Current, VGS @ 10V 1.1 A
I
D
I
DM
PD @TA = 25°C Power Dissipation 3.1 W
PD @TC = 25°C Power Dissipation 54 W
V
GS
E
AS
I
AR
E
AR
dv/d t Peak Diode Recovery dv/dt 1.5 V/ns
T
J
T
STG
Pulsed Drain Current 6.8
Linear Derating Factor 0.43 W/°C
Gate-to-Source Voltage ± 20 V
Single Pulse Avalanche Energy 180 mJ
Avalanche Current 1.7 A
Repetitive Avalanche Energy 5.4 mJ
Operating Junction and -55 to + 150
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θJA
Junction-to-Case ––– 2.3
Junction-to-Ambient ( PCB Mounted,steady-state)** –– – 40
°C/W
°C
7/10/97
IRFBF20S/L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
S
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage 900 ––– ––– V VGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient ––– 1 .1 ––– V/°C Reference to 25°C, ID =1mA
J
Static Drain-to-Source On-Resistance ––– ––– 8.0 Ω VGS =10V, ID = 1.0A
Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
Forward Transconductance 0.60 ––– ––– S VDS = 50V, ID = 1.0A
Drain-to-Source Leakage Current
––– ––– 100
––– ––– 500 VDS = 720V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 100 V
Gate-to-Source Reverse Leakage ––– – –– -100
VDS = 900V, VGS = 0V
µA
= 20V
GS
nA
VGS = -20V
Total Gate Charge ––– ––– 38 ID = 1.7A
Gate-to-Source Charge ––– ––– 4.7 nC VDS = 360V
Gate-to-Drain ("Miller") Charge ––– ––– 21 VGS = 10V, See Fig. 6 and 13
Turn-On Delay Time ––– 8.0 ––– VDD = 450V
Rise Time ––– 21 ––– ID = 1.7A
Turn-Off Delay Time ––– 5 6 ––– RG = 18Ω
ns
Fall Time ––– 32 ––– RD = 280Ω, See Fig. 10
Internal Source Inductance
––– –––
7.5
Between lead,
nH
and center of die contact
Input Capacitance ––– 490 ––– VGS = 0V
Output Capacitance ––– 55 –– – pF VDS = 25V
Reverse Transfer Capacitance ––– 18 ––– ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
V
DD
RG = 25Ω, I
I
SD
TJ ≤ 150°C
** When mounted on 1" square PCB (FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
1.7
6.8
showing the
A
p-n junction diode.
Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 1.7A, VGS = 0V
Reverse Recovery Time ––– 350 530 ns TJ = 25°C, IF = 1.7A
Reverse Recovery Charge ––– 0.85 1.3 µC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Pulse width ≤ 300µs; duty cycle ≤ 2%.
Uses IRFBF20 data and test conditions
=50V, starting TJ = 25°C, L =117mH
= 1.7A. (See Figure 11)
AS
≤ 1.7A, di/dt ≤ 70A/µs, V
DD
≤ V
(BR)DSS
,
D
G
S