International Rectifier IRFBA90N20D Datasheet

SMPS MOSFET
PD - 94300
IRFBA90N20D
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
DSS
R
DS(on)
max I
200V 0.023 98A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
Super-220™
and Current
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 98 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 71 A I
DM
PD @TC = 25°C Power Dissipation 650 W
V
GS
dv/dt Peak Diode Recovery dv/dt 6.3 V/ns T
J
T
STG
Pulsed Drain Current 390
Linear Derating Factor 4.3 W/°C Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Recommended Clip Force 20 N
D
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Notes through are on page 8
Junction-to-Case ––– 0.23 Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W Junction-to-Ambient ––– 58
www.irf.com 1
09/06/01
IRFBA90N20D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 790 ––– VGS = 0V, VDS = 0V to 160V
oss
Drain-to-Source Breakdown Voltage 200 ––– ––– VVGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.22 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– ––– 0.023 VGS = 10V, ID = 59A Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current Gate-to-Source Forward Leakage ––– ––– 100 V
Gate-to-Source Reverse Leakage ––– ––– -100
––– ––– 25 ––– ––– 250 VDS = 160V, VGS = 0V, TJ = 150°C
µA
nA
= 200V, VGS = 0V
V
DS
= 30V
GS
V
= -30V
GS
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 41 ––– ––– SVDS = 50V, ID = 59A
Total Gate Charge ––– 160 240 ID = 59A Gate-to-Source Charge ––– 45 67 nC VDS = 160V Gate-to-Drain ("Miller") Charge ––– 75 110 VGS = 10V Turn-On Delay Time ––– 23 ––– VDD = 100V Rise Time ––– 160 ––– ID = 59A Turn-Off Delay Time ––– 39 ––– RG = 1.2
ns
Fall Time ––– 77 ––– VGS = 10V Input Capacitance ––– 6080 ––– VGS = 0V Output Capacitance ––– 1040 ––– VDS = 25V Reverse Transfer Capacitance ––– 150 ––– pF ƒ = 1.0MHz Output Capacitance ––– 7500 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Output Capacitance ––– 410 ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz
Avalanche Characteristics
Parameter Typ. Max. Units
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy ––– 960 mJ Avalanche Current ––– 59 A Repetitive Avalanche Energy ––– 65 mJ
Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
98
390
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 59A, VGS = 0V Reverse Recovery Time ––– 220 340 nS TJ = 25°C, IF = 59A Reverse RecoveryCharge ––– 1.9 2.8 µC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2 www.irf.com
D
S
IRFBA90N20D
(
)
1000
100
10
1
VGS TOP 15V 12V 10V
8.0V
7.0V
6.0V
5.5V BOTTOM 5.0V
5.0V
, Drain-to-Source Current (A)
0.1
D
I
20µs PULSE WIDTH Tj = 25°C
0.01
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1000.00
)
100.00
TJ = 175°C
1000
100
10
, Drain-to-Source Current (A)
D
I
VGS TOP 15V 12V 10V
8.0V
7.0V
6.0V
5.5V BOTTOM 5.0V
5.0V
20µs PULSE WIDTH
1
0.1 1 10 100
Tj = 175°C
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
100
LIMITED BY PACKAGE
80
60
10.00
TJ = 25°C
1.00
, Drain-to-Source Current
D
I
0.10
5.0 7.0 9.0 11.0 13.0 15.0
V
= 15V
DS
20µs PULSE WIDTH
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
40
D
I , Drain Current (A)
20
0
25 50 75 100 125 150 175
T , Case Temperature
C
°
C
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com 3
Loading...
+ 5 hidden pages