International Rectifier IRFB59N10D, IRFS59N10D Datasheet

Notes through are on page 11
www.irf.com 1
4/17/00
IRFB59N10D
IRFS59N10D
IRFSL59N10D
SMPS MOSFET
HEXFET® Power MOSFET
l High frequency DC-DC converters
Benefits
Applications
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
V
DSS
R
DS(on)
max I
D
100V 0.025 59A
Typical SMPS Topologies
l Half-bridge and Full-bridge DC-DC Converters
PD - 93890
D2Pak
IRFS59N10D
TO-220AB
IRFB59N10D
TO-262
IRFSL59N10D
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 59 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 42 A I
DM
Pulsed Drain Current 236 PD @TA = 25°C Power Dissipation 3.8 W PD @TC = 25°C Power Dissipation 200
Linear Derating Factor 1.3 W/°C V
GS
Gate-to-Source Voltage ± 30 V dv/dt Peak Diode Recovery dv/dt 3.3 V/ns T
J
Operating Junction and -55 to + 175 T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
Absolute Maximum Ratings
l Full-bridge Inverters
IRFB/IRFS/IRFSL59N10D
2 www.irf.com
Parameter Min. Typ. Max. Units Conditions
g
fs
Forward Transconductance 18 ––– ––– S VDS = 50V, ID = 35.4A
Q
g
Total Gate Charge ––– 76 114 ID = 35.4A
Q
Gate-to-Source Charge ––– 24 36 nC VDS = 80V
Q
gd
Gate-to-Drain ("Miller") Charge ––– 36 54 VGS = 10V,
t
d(on)
Turn-On Delay Time ––– 16 ––– VDD = 50V
t
r
Rise Time ––– 90 ––– ID = 35.4A
t
d(off)
Turn-Off Delay Time ––– 20 ––– RG = 2.5
t
f
Fall Time ––– 12 ––– VGS = 10V
C
iss
Input Capacitance ––– 2450 – –– VGS = 0V
C
oss
Output Capacitance ––– 740 ––– VDS = 25V
C
rss
Reverse Transfer Capacitance ––– 190 ––– pF ƒ = 1.0MHz
C
oss
Output Capacitance ––– 3370 – –– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
C
oss
Output Capacitance ––– 390 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz
C
oss
eff. Effective Output Capacitance ––– 690 ––– VGS = 0V, VDS = 0V to 80V
Dynamic @ TJ = 25°C (unless otherwise specified)
ns
Parameter Typ. Max. Units
E
AS
Single Pulse Avalanche Energy ––– 510 mJ
I
AR
Avalanche Current ––– 35.4 A
E
AR
Repetitive Avalanche Energy ––– 20 mJ
Avalanche Characteristics
S
D
G
Parameter Min. Typ. Max. Units Conditions
I
S
Continuous Source Current MOSFET symbol (Body Diode)
––– –––
showing the
I
SM
Pulsed Source Current integral reverse (Body Diode)
––– –––
p-n junction diode.
V
SD
Diode Forward Voltage ––– ––– 1. 3 V TJ = 25°C, IS = 35.4A, VGS = 0V
t
rr
Reverse Recovery Time ––– 130 200 ns TJ = 25°C, IF = 35.4A
Q
rr
Reverse RecoveryCharge ––– 0.75 1 .1 µC di/dt = 100A/µs
t
on
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Diode Characteristics
59
236
A
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 250µA
V
(BR)DSS
/T
J
Breakdown Voltage Temp. Coefficient
––– 0.11 ––– V/°C Reference to 25°C, ID = 1mA
R
DS(on)
Static Drain-to-Source On-Resistance ––– ––– 0.025 VGS = 10V, ID = 35.4A
V
GS(th)
Gate Threshold Voltage 3.0 ––– 5.5 V VDS = VGS, ID = 250µA
––– ––– 25
µA
VDS = 100V, VGS = 0V
––– ––– 250 VDS = 80V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 10 0 VGS = 30V Gate-to-Source Reverse Leakage ––– ––– -100
nA
VGS = -30V
I
GSS
I
DSS
Drain-to-Source Leakage Current
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
Junction-to-Case ––– 0.75
R
θCS
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
R
θJA
Junction-to-Ambient ––– 62
R
θJA
Junction-to-Ambient ––– 40
IRFB/IRFS/IRFSL59N10D
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
59A
0.01
0.1
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH T = 25 C
J
°
TOP
BOTTOM
VGS 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
5.0V
0.1
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH T = 175 C
J
°
TOP
BOTTOM
VGS 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
5.0V
0.1
1
10
100
1000
4 6 8 10 12 14
V = 50V 20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
°
T = 175 C
J
°
IRFB/IRFS/IRFSL59N10D
4 www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1 10 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
V
GS
= 0V, f = 1 MHZ
C
iss
= C
gs
+ Cgd, C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
0 20 40 60 80 100 120
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
35.4A
V = 20V
DS
V = 50V
DS
V = 80V
DS
0.1
1
10
100
1000
0.2 0.6 1.0 1.4 1.8 2.2
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
°
T = 175 C
J
°
1
10
100
1000
1 10 100 1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T T= 175 C
= 25 C
°
°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
Loading...
+ 7 hidden pages