SMPS MOSFET
PD - 94358
IRFB38N20D
IRFS38N20D
IRFSL38N20D
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
V
DSS
R
DS(on)
max I
200V 0.054Ω 44A
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
TO-220AB
IRFB38N20D
D2Pak
IRFS38N20D
TO-262
IRFSL38N20D
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 44
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 32 A
I
DM
PD @TA = 25°C Power Dissipation 3.8 W
PD @TC = 25°C Power Dissipation 320
V
GS
dv/dt Peak Diode Recovery dv/dt 9.5 V/ns
T
J
T
STG
Pulsed Drain Current 180
Linear Derating Factor 2.1 W/°C
Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting torqe, 6-32 or M3 screw 10 lbf•in (1.1N•m)
D
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
R
θJA
Notes through are on page 11
Junction-to-Case ––– 0.47
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
Junction-to-Ambient ––– 62
Junction-to-Ambient ––– 40
www.irf.com 1
12/12/01
IRFB/IRFS/IRFSL38N20D
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 380 ––– VGS = 0V, VDS = 0V to 160V
oss
Drain-to-Source Breakdown Voltage 200 ––– ––– VVGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.22 ––– V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance ––– ––– 0.054 Ω VGS = 10V, ID = 26A
Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage ––– ––– 100 V
Gate-to-Source Reverse Leakage ––– ––– -100
––– ––– 25
––– ––– 250 VDS = 160V, VGS = 0V, TJ = 150°C
µA
nA
= 200V, VGS = 0V
V
DS
= 30V
GS
V
= -30V
GS
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 17 ––– ––– SVDS = 50V, ID = 26A
Total Gate Charge ––– 76 110 ID = 26A
Gate-to-Source Charge ––– 22 34 nC VDS = 160V
Gate-to-Drain ("Miller") Charge ––– 34 51 VGS = 10V,
Turn-On Delay Time ––– 16 ––– VDD = 100V
Rise Time ––– 95 ––– ID = 26A
Turn-Off Delay Time ––– 29 ––– RG = 2.5Ω
ns
Fall Time ––– 47 ––– VGS = 10V
Input Capacitance ––– 2900 ––– VGS = 0V
Output Capacitance ––– 450 ––– VDS = 25V
Reverse Transfer Capacitance ––– 73 ––– pF ƒ = 1.0MHz
Output Capacitance ––– 3550 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 180 ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz
Avalanche Characteristics
Parameter Typ. Max. Units
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy ––– 460 mJ
Avalanche Current ––– 26 A
Repetitive Avalanche Energy ––– 32 mJ
Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
44
180
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.5 V TJ = 25°C, IS = 26A, VGS = 0V
Reverse Recovery Time ––– 160 240 nS TJ = 25°C, IF = 26A
Reverse RecoveryCharge ––– 1.3 2.0 µC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2 www.irf.com
D
S
IRFB/IRFS/IRFSL38N20D
1000
VGS
TOP 15V
12V
10V
8.0V
7.0V
100
6.0V
5.5V
BOTTOM 5.0V
10
1
, Drain-to-Source Current (A)
D
I
5.0V
300µs PULSE WIDTH
Tj = 25°C
0.1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1000.00
100
10
1
, Drain-to-Source Current (A)
D
I
VGS
TOP 15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
300µs PULSE WIDTH
Tj = 175°C
0.1
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
3.5
44A
I =
D
5.0V
)
(Α
TJ = 25°C
3.0
2.5
100.00
TJ = 175°C
2.0
1.5
(Normalized)
10.00
1.0
, Drain-to-Source Current
D
I
1.00
V
= 15V
DS
300µs PULSE WIDTH
5.0 7.0 9.0 11.0 13.0 15.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
T , Junction Temperature
J
Fig 4. Normalized On-Resistance
V =
°
C
10V
GS
Vs. Temperature
www.irf.com 3
IRFB/IRFS/IRFSL38N20D
100000
10000
V
= 0V, f = 1 MHZ
GS
C
= C
iss
rss
oss
= C
= C
gs
gd
ds
+ C
C
C
+ Cgd, C
gd
Ciss
1000
Coss
C, Capacitance(pF)
100
Crss
10
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.00
SHORTED
ds
12
D
I =
26A
10
7
5
2
GS
V , Gate-to-Source Voltage (V)
0
0 16 32 48 64 80
Q , Total Gate Charge (nC
G
V = 160V
DS
V = 100V
DS
V = 40V
DS
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100.00
TJ = 175°C
100
100µsec
10.00
TJ = 25°C
, Reverse Drain Current (A)
1.00
SD
I
0.10
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
V
GS
= 0V
10
1
, Drain-to-Source Current (A)
D
Tc = 25°C
I
Tj = 175°C
Single Pulse
0.1
1 10 100 1000
V
, Drain-toSource Voltage (V)
DS
Fig 8. Maximum Safe Operating Area
1msec
10msec
Forward Voltage
4 www.irf.com