PD- 94037A
IRF7473
HEXFET® Power MOSFET
Applications
l Telecom and Data-Com 24 and 48V
input DC-DC converters
l Motor Control
l Uninterrutible Power Supply
V
DSS
100V 26m
R
DS(on)
ΩΩ
Ω@V
ΩΩ
max I
= 10V 6.9A
GS
D
Benefits
l Ultra Low On-Resistance
l High Speed Switching
l Low Gate Drive Current Due to Improved
Gate Charge Characteristic
l Improved Avalanche Ruggedness and
Dynamic dv/dt
l Fully Characterized Avalanche Voltage
and Current
S
S
S
1
2
3
4
Top V iew
A
8
D
7
D
6
D
5
DG
SO-8
Typical SMPS Topologies
l Full and Half Bridge 48V input Circuit
l Forward 24V input Circuit
Absolute Maximum Ratings
Parameter Max. Units
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 6.9
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 5.5 A
I
DM
PD @TA = 25°C Power Dissipation 2.5 W
V
GS
dv/dt Peak Diode Recovery dv/dt 5.8 V/ns
T
J
T
STG
Pulsed Drain Current 55
Linear Derating Factor 0.02 W/°C
Gate-to-Source Voltage ± 20 V
Operating Junction and -55 to + 150
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
θJL
R
θJA
Junction-to-Drain Lead ––– 20
Junction-to-Ambient ––– 50 °C/W
Notes through are on page 8
www.irf.com 1
4/27/01
IRF7473
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 230 ––– VGS = 0V, VDS = 0V to 80V
oss
Drain-to-Source Breakdown Voltage 100 ––– ––– V VGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.11 ––– V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance ––– 22 26 mΩ VGS = 10V, ID = 4.1A
Gate Threshold Voltage 3.5 ––– 5.5 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 1.0
––– ––– 250 VDS = 80V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 95V, VGS = 0V
µA
nA
VGS = -20V
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 10 ––– ––– S VDS = 50V, ID = 4.1A
Total Gate Charge ––– 61 ––– ID = 4.1A
Gate-to-Source Charge ––– 21 ––– nC VDS = 50V
Gate-to-Drain ("Miller") Charge ––– 19 ––– VGS = 10V,
Turn-On Delay Time ––– 24 ––– VDD = 50V
Rise Time ––– 20 ––– ID = 4.1A
Turn-Off Delay Time ––– 29 ––– RG = 6.0Ω
ns
Fall Time ––– 11 ––– VGS = 10V
Input Capacitance ––– 3180 ––– VGS = 0V
Output Capacitance ––– 230 ––– VDS = 25V
Reverse Transfer Capacitance ––– 120 ––– pF ƒ = 1.0MHz
Output Capacitance ––– 830 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 150 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz
Avalanche Characteristics
Parameter Typ. Max. Units
E
AS
I
AR
Single Pulse Avalanche Energy ––– 140 mJ
Avalanche Current ––– 4.1 A
Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
2.3
55
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 4.1A, VGS = 0V
Reverse Recovery Time ––– 55 ––– ns TJ = 25°C, IF = 4.1A
Reverse RecoveryCharge ––– 140 ––– nC di/dt = 100A/µs
2 www.irf.com
D
S
IRF7473
1000
100
10
1
, Drain-to-Source Current (A)
0.1
D
I
0.01
0.1 1 10 100
1000
VGS
TOP 15V
12V
10V
8.0V
7.5V
7.0V
6.5V
BOTTOM 6.0V
6.0V
VDS, Drain-to-Source Voltage (V)
20µs PULSE WIDTH
Tj = 25°C
1000
100
10
1
D
I , Drain-to-Source Current (A)
0.1
0.1 1 10 100
VGS
TOP
15V
12V
10V
8.0V
7.0V
6.5V
6.0V
BOTTOM
5.5V
5.5V
20µs PULSE WIDTH
V , Drain-to-Source Voltage (V)
DS
°
T = 150 C
J
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.5
6.9A
I =
D
100
°
T = 150 C
J
10
1
°
T = 25 C
0.1
D
I , Drain-to-Source Current (A)
0.01
5 6 7 8 9 10 11 12
J
V = 25V
DS
20µs PULSE WIDTH
V , Gate-to-Source Voltage (V)
GS
Fig 3. Typical Transfer Characteristics
2.0
1.5
1.0
(Normalized)
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature( C)
J
Fig 4. Normalized On-Resistance
V =
10V
GS
°
Vs. Temperature
www.irf.com 3