SMPS MOSFET
PD- 93897C
IRF7452
HEXFET® Power MOSFET
Applications
High frequency DC-DC converters
V
DSS
R
DS(on)
max I
100V 0.060Ω 4.5A
Benefits
Low Gate to Drain Charge to Reduce
Switching Losses
Fully Characterized Capacitance Including
Effective C
to Simplify Design, (See
OSS
App. Note AN1001)
Fully Characterized Avalanche Voltage
and Current
S
S
S
1
2
3
4
Top View
A
A
8
D
7
D
6
D
5
DG
SO-8
Absolute Maximum Ratings
Parameter Max. Units
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 4.5
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 3.6 A
I
DM
PD @TA = 25°C Power Dissipation 2.5 W
V
GS
dv/dt Peak Diode Recovery dv/dt 3.5 V/ns
T
J
T
STG
Pulsed Drain Current 36
Linear Derating Factor 0.02 W/°C
Gate-to-Source Voltage ± 30 V
Operating Junction and -55 to + 150
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
D
Typical SMPS Topologies
Telecom 48V input DC-DC with Half Bridge Primary or Datacom 28V input
with Passive Reset Forward Converter Primary
Notes through are on page 8
www.irf.com 1
11/23/01
IRF7452
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 280 ––– VGS = 0V, VDS = 0V to 80V
oss
Drain-to-Source Breakdown Voltage 100 ––– ––– VVGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient
J
––– 0.11 ––– V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance ––– ––– 0.060 Ω VGS = 10V, ID = 2.7A
Gate Threshold Voltage 3.0 ––– 5.5 V VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
––– ––– 25
––– ––– 250 VDS = 80V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 24V
Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 100V, VGS = 0V
µA
nA
VGS = -24V
Parameter Min. Typ. Max. Units Conditions
Forward Transconductance 3.4 ––– ––– SVDS = 50V, ID = 2.7A
Total Gate Charge ––– 33 50 ID = 2.7A
Gate-to-Source Charge ––– 7.3 11 nC VDS = 80V
Gate-to-Drain ("Miller") Charge ––– 16 24 VGS = 10V,
Turn-On Delay Time ––– 9.5 ––– VDD = 50V
Rise Time ––– 11 ––– ID = 2.7A
Turn-Off Delay Time ––– 16 ––– RG = 6.0Ω
ns
Fall Time ––– 13 ––– VGS = 10V
Input Capacitance ––– 930 ––– VGS = 0V
Output Capacitance ––– 300 ––– VDS = 25V
Reverse Transfer Capacitance ––– 84 ––– pF ƒ = 1.0MHz
Output Capacitance ––– 1370 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 170 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz
Avalanche Characteristics
Parameter Typ. Max. Units
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy ––– 200 mJ
Avalanche Current ––– 4.5 A
Repetitive Avalanche Energy ––– 0.25 mJ
Thermal Resistance
Parameter Typ. Max. Units
R
θJA
Maximum Junction-to-Ambient ––– 50 °C/W
Diode Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
2.3
36
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 2.7A, VGS = 0V
Reverse Recovery Time ––– 77 120 ns TJ = 25°C, IF = 2.7A
Reverse RecoveryCharge ––– 270 410 nC di/dt = 100A/µs
2 www.irf.com
D
S
IRF7452
100
10
1
0.1
D
I , Drain-to-Source Current (A)
0.01
0.1 1 10 100
100
VGS
TOP
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM
5.0V
5.0V
20µs PULS EWIDTH
T=25C
J
V , Drain-to-Source Voltage (V)
DS
°
100
10
1
D
I , Drain-to-Source Current (A)
0.1
0.1 1 10 100
VGS
TOP
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM
5.0V
5.0V
20µs PULS EWIDTH
T = 150 C
J
V , Drain-to-Source Voltage (V)
DS
°
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.5
I =
D
4.5A
2.0
°
T = 150 C
10
J
1.5
°
T=25C
1
D
I , Drain-to-Source Current (A)
0.1
5.0 6.0 7.0 8.0
J
V = 50V
DS
20µs PULSE WIDTH
V , Gate-to-Source Voltage (V)
GS
Fig 3. Typical Transfer Characteristics
1.0
(Normalized)
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature(C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3