International Rectifier IRF7103QTR, IRF7103Q Datasheet

HEXFET® Power MOSFET
Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available
in Tape & Reel.
Absolute Maximum Ratings
Description
03/14/02
www.irf.com 1
Advanced Process Technology
Dual N-Channel MOSFET
Ultra Low On-Resistance
175°C Operating Temperature
Repetitive Avalanche Allowed up to Tjmax
Automotive [Q101] Qualified
Benefits
Typical Applications
Anti-lock Braking Systems (ABS)
Electronic Fuel Injection
Power Doors, Windows & Seats
AUTOMOTIVE MOSFET
PD - 93944C
IRF7103Q
V
DSS
R
DS(on)
max (m
Ω)Ω)
Ω)Ω)
Ω) I
D
50V 130@VGS = 10V 3.0A
200@V
GS
= 4.5V 1.5A
Symbol Parameter Typ. Max. Units
R
θJL
Junction-to-Drain Lead ––– 20
R
θJA
Junction-to-Ambient S ––– 50 °C/W
Thermal Resistance
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 4.5V 3.0 ID @ TC = 70°C Continuous Drain Current, VGS @ 4.5V 2.5 A I
DM
Pulsed Drain Current Q 25
PD @TC = 25°C Power DissipationS 2.4 W
Linear Derating Factor 16 mW/°C
V
GS
Gate-to-Source Voltage ± 20 V
E
AS
Single Pulse Avalanche EnergyT 22 mJ
I
AR
Avalanche CurrentQ See Fig.16c, 16d, 19, 20 A
E
AR
Repetitive Avalanche EnergyV mJ dv/dt Peak Diode Recovery dv/dt U 12 V/ns T
J, TSTG
Junction and Storage Temperature Range -55 to + 175 °C
D1 D1
D2
D2
G1
S2
G2
S1
Top View
8
1
2
3
4
5
6
7
SO-8
IRF7103Q
2 www.irf.com
Parameter Min. Typ. Max. Units Conditions
I
S
Continuous Source Current MOSFET symbol (Body Diode) showing the
I
SM
Pulsed Source Current integral reverse (Body Diode) Q p-n junction diode.
V
SD
Diode Forward Voltage ––– ––– 1.2 V TJ = 25°C, IS = 1.5A, VGS = 0VR
t
rr
Reverse Recovery Time ––– 35 53 ns TJ = 25°C, IF = 1.5A
Q
rr
Reverse Recovery Charge ––– 45 67 nC di/dt = 100A/µs
R
Source-Drain Ratings and Characteristics
A
12
–––
–––
–––
3.0
–––
Notes:
Q Repetitive rating; pulse width limited by
max. junction temperature.
R Pulse width 400µs; duty cycle 2%. S Surface mounted on 1 in square Cu board
T Starting T
J
= 25°C, L = 4.9mH
RG = 25, I
AS
= 3.0A. (See Figure 12).
U I
SD
2.0A, di/dt 155A/µs, V
DD
V
(BR)DSS
,
TJ ≤ 175°C
V Limited by T
Jmax
, see Fig.16c, 16d, 19, 20 for typical repetitive
avalanche performance.
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage 50 ––– ––– VVGS = 0V, ID = 250µA
V
(BR)DSS
/∆T
J
Breakdown Voltage Temp. Coefficient ––– 0.057 ––– V/°C Reference to 25°C, ID = 1mA
––– ––– 130 VGS = 10V, ID = 3.0A R ––– ––– 200 VGS = 4.5V, ID = 1.5A R
V
GS(th)
Gate Threshold Voltage 1.0 ––– 3.0 V VDS = VGS, ID = 250µA
g
fs
Forward Transconductance 3.4 ––– ––– SVDS = 15V, ID = 3.0A
––– ––– 2.0 VDS = 40V, VGS = 0V ––– ––– 25 VDS = 40V, VGS = 0V, TJ = 55°C
Gate-to-Source Forward Leakage ––– ––– 100 V
GS
= 20V
Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V
Q
g
Total Gate Charge ––– 10 15 ID = 2.0A
Q
gs
Gate-to-Source Charge ––– 1.2 ––– nC VDS = 40V
Q
gd
Gate-to-Drain ("Miller") Charge ––– 2.8 ––– VGS = 10V
t
d(on)
Turn-On Delay Time ––– 5.1 ––– VDD = 25V R
t
r
Rise Time ––– 1.7 ––– ID = 1.0A
t
d(off)
Turn-Off Delay Time ––– 15 ––– RG = 6.0
t
f
Fall Time ––– 2.3 ––– RD = 25
C
iss
Input Capacitance ––– 255 ––– VGS = 0V
C
oss
Output Capacitance ––– 69 ––– pF VDS = 25V
C
rss
Reverse Transfer Capacitance ––– 29 ––– ƒ = 1.0MHz
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
I
GSS
µA
m
R
DS(on)
Static Drain-to-Source On-Resistance
I
DSS
Drain-to-Source Leakage Current
nA
ns
S
D
G
IRF7103Q
www.irf.com 3
Fig 3. Typical Transfer Characteristics
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1
10
100
I
D
, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH Tj = 25°C
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
I
D
, Drain-to-Source Current (A)
4.5V
20µs PULSE WIDTH Tj = 175°C
VGS TOP 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V BOTTOM 4.5V
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
3.0A
3.0 6.0 9.0 12.0 15.0
VGS, Gate-to-Source Voltage (V)
1.00
10.00
100.00
I
D
, Drain-to-Source Current
)
TJ = 25°C
TJ = 175°C
V
DS
= 25V
20µs PULSE WIDTH
Loading...
+ 7 hidden pages