International Rectifier IRF640NSTR, IRF640NS, IRF640NL, IRF640N Datasheet

HEXFET® Power MOSFET
10/09/00
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 18 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 13 A I
DM
Pulsed Drain Current 72
PD @TC = 25°C Power Dissipation 150 W
Linear Derating Factor 1.0 W/°C
V
GS
Gate-to-Source Voltage ± 20 V
E
AS
Single Pulse Avalanche Energy 247 mJ
I
AR
Avalanche Current 18 A
E
AR
Repetitive Avalanche Energy 15 mJ dv/dt Peak Diode Recovery dv/dt 8.1 V/ns T
J
Operating Junction and -55 to +175 T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)
Absolute Maximum Ratings
Description
V
DSS
= 200V
R
DS(on)
= 0.15
ID = 18A
S
D
G
l Advanced Process Technology l Dynamic dv/dt Rating l 175°C Operating Temperature l Fast Switching l Fully Avalanche Rated l Ease of Paralleling l Simple Drive Requirements
D2Pak
IRF640NS
TO-220AB
IRF640N
TO-262
IRF640NL
IRF640N
IRF640NS
IRF640NL
Fifth Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.
The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. The D2Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on­resistance in any existing surface mount package. The D2Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to
2.0W in a typical surface mount application. The through-hole version (IRF640NL) is available for low­profile application.
www.irf.com 1
PD - 94006
www.irf.com 2
IRF640N/S/L
S
D
G
Parameter Min. Typ. Max. Units Conditions
I
S
Continuous Source Current MOSFET symbol (Body Diode)
––– –––
showing the
I
SM
Pulsed Source Current integral reverse (Body Diode)
––– –––
p-n junction diode.
V
SD
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 11A, VGS = 0V
t
rr
Reverse Recovery Time ––– 167 251 ns TJ = 25°C, IF = 11A
Q
rr
Reverse Recovery Charge ––– 929 1394 nC di/dt = 100A/µs
t
on
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Source-Drain Ratings and Characteristics
18
72
A
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage 200 ––– –– – V VGS = 0V, ID = 250µA
V
(BR)DSS
/T
J
Breakdown Voltage Temp. Coefficient ––– 0.25 –– – V/°C Reference to 25°C, ID = 1mA
R
DS(on)
Static Drain-to-Source On-Resistance ––– ––– 0.15 VGS = 10V, ID = 11A
V
GS(th)
Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
g
fs
Forward Transconductance 6.8 ––– ––– S VDS = 50V, ID = 11A
––– ––– 25
µA
VDS = 200V, VGS = 0V
––– ––– 250 VDS = 160V, VGS = 0V, TJ = 150°C Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100
nA
VGS = -20V
Q
g
Total Gate Charge ––– ––– 67 ID = 11A
Q
gs
Gate-to-Source Charge ––– ––– 11 nC VDS = 160V
Q
gd
Gate-to-Drain ("Miller") Charge ––– ––– 33 VGS = 10V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time ––– 10 ––– VDD = 100V
t
r
Rise Time ––– 19 ––– ID = 11A
t
d(off)
Turn-Off Delay Time ––– 23 ––– RG = 2.5
t
f
Fall Time ––– 5.5 ––– RD = 9.0, See Fig. 10
Between lead,
––– –––
6mm (0.25in.) from package and center of die contact
C
iss
Input Capacitance ––– 1160 ––– VGS = 0V
C
oss
Output Capacitance ––– 185 ––– VDS = 25V
C
rss
Reverse Transfer Capacitance ––– 53 ––– pF ƒ = 1.0MHz, See Fig. 5
nH
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
L
D
Internal Drain Inductance
L
S
Internal Source Inductance ––– –––
S
D
G
I
GSS
ns
4.5
7.5
I
DSS
Drain-to-Source Leakage Current
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
Junction-to-Case ––– 1.0
R
θCS
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
R
θJA
Junction-to-Ambient ––– 62
R
θJA
Junction-to-Ambient (PCB mount) ––– 40
IRF640N/S/L
www.irf.com 3
0.01
0.1
1
10
100
0.1 1 10 100
20µs PULSE WIDTH T = 25 C
J
°
TOP
BOTTOM
VGS 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
0.1 1 10 100
20µs PULSE WIDTH T = 175 C
J
°
TOP
BOTTOM
VGS 15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
0.1
1
10
100
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V = 50V 20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 25 C
J
°
T = 175 C
J
°
-60 -40 -20 0 20 40 60 80 100 120140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Junction Temperature( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
18A
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com 4
IRF640N/S/L
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0.1
1
10
100
1000
0.1 1 10 100 1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
Single Pulse
T T= 175 C
= 25 C
°
°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1 10 100 1000
VDS, Drain-to-Source Voltage (V)
0
500
1000
1500
2000
2500
C, Capacitance(pF)
Coss
Crss
Ciss
V
GS
= 0V, f = 1 MHZ
C
iss
= C
gs
+ Cgd, C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
0 20 40 60 80
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I =
D
11A
V = 40V
DS
V = 100V
DS
V = 160V
DS
0.1
1
10
100
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J
°
T = 175 C
J
°
Loading...
+ 7 hidden pages