PD - 94268
HEXFET
®
POWER MOSFET
THRU-HOLE (TO-257AA)
Product Summary
Part Number BV
DSS
IRF5Y3315CM 150V 0.085Ω 18A*
Fifth Generation HEXFET® power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve the lowest possible on-resistance
per silicon unit area. This benefit, combined with the
fast switching speed and ruggedized device design
that HEXFET power MOSFETs are well known for,
provides the designer with an extremely efficient device
for use in a wide variety of applications.
These devices are well-suited for applications such
as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse
circuits.
RDS(on) ID
IRF5Y3315CM
150V, N-CHANNEL
TO-257AA
Features:
n Low RDS(on)
n Avalanche Energy Ratings
n Dynamic dv/dt Rating
n Simple Drive Requirements
n Ease of Paralleling
n Hermetically Sealed
n Light Weight
Absolute Maximum Ratings
Parameter Units
ID @ VGS = 10V, TC = 25°C Continuous Drain Current 18*
ID @ VGS = 10V, TC = 100°C Continuous Drain Current 12
I
DM
PD @ TC = 25°C Max. Power Dissipation 75 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt ➂ 3.0
T
J
T
STG
* Current is limited by package
For footnotes refer to the last page
Pulsed Drain Current ➀ 72
Linear Derating Factor 0.6 W/°C
Gate-to-Source Voltage ±20 V
Single Pulse Avalanche Energy ➁ 94 mJ
Avalanche Current ➀ 12 A
Repetitive Avalanche Energy ➀ 7.5 mJ
Operating Junction -55 to 150
Storage Temperature Range
Lead Temperature 300 (0.063in./1.6mm from case for 10sec)
Weight 4.3 (Typical) g
www.irf.com 1
A
V/ns
o
C
6/22/01
IRF5Y3315CM
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter Min Typ Max Units Test Conditions
BV
DSS
∆BV
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
LS + L
C
iss
C
oss
C
rss
DSS
D
Drain-to-Source Breakdown Voltage 150 — — V VGS = 0V, ID = 250µA
/∆TJTemperature Coefficient of Breakdown — 0.186 — V/°C Reference to 25°C, ID = 1.0mA
Voltage
Static Drain-to-Source On-State — — 0.085 Ω VGS = 10V, ID = 12A
Resistance
Gate Threshold Voltage 2.0 — 4.0 V VDS = VGS, ID = 250µA
Forward Transconductance 12 — — S ( )VDS = 15V, IDS = 12A ➃
Zero Gate Voltage Drain Current — — 25 V
— — 250 VDS = 120V,
Gate-to-Source Leakage Forward — — 100 VGS = 20V
Gate-to-Source Leakage Reverse — — -100 VGS = -20V
Total Gate Charge — — 95 VGS =10V, ID = 12A
Gate-to-Source Charge — — 11 nC VDS = 120V
Gate-to-Drain (‘Miller’) Charge — — 47
Turn-On Delay Time — — 25 VDD = 75V, ID = 12A,
Rise Time — — 60 VGS =10V, RG = 5.1Ω
Turn-Off Delay Time — — 75
Fall Time — — 60
Total Inductance — 6.8 —
Input Capacitance — 1375 — VGS = 0V, VDS = 25V
Output Capacitance — 300 — p F f = 1.0MHz
Reverse Transfer Capacitance — 160 —
Ω
µA
nA
ns
nH
➃
= 150V ,VGS=0V
DS
VGS = 0V, TJ =125°C
Measured from drain lead (6mm/
0.25in. from package) to source
lead (6mm/0.25in. from package)
Source-Drain Diode Ratings and Characteristics
Parameter Min Typ Max Units T est Conditions
I
Continuous Source Current (Body Diode) — — 18*
S
I
Pulse Source Current (Body Diode) ➀ —— 72
SM
V
Diode Forward Voltage — — 1.3 V Tj = 25°C, IS = 12A, VGS = 0V ➃
SD
t
Reverse Recovery Time — — 260 ns Tj = 25°C, IF = 12A, di/dt ≤100A/µs
rr
Q
Reverse Recovery Charge — — 1.7 µCV
RR
t
Forward Turn-On Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L
on
* Current is limited by package
A
≤30V ➃
DD
Thermal Resistance
Parameter Min Typ Max Units Test Conditions
R
thJC
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2 www.irf.com
Junction-to-Case — — 1.67 °C/W
+ LD.
S
IRF5Y3315CM
100
10
D
I , Drain-to-Source Current (A)
1
0.1 1 10 100
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH
T = 25 C
J
V , Drain-to-Source Voltage (V)
DS
°
Fig 1. Typical Output Characteristics
100
°
T = 25 C
J
°
T = 150 C
J
100
10
D
I , Drain-to-Source Current (A)
1
0.1 1 10 100
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
20µs PULSE WIDTH
T = 150 C
J
V , Drain-to-Source Voltage (V)
DS
4.5V
°
Fig 2. Typical Output Characteristics
2.5
2.0
18A
I =
D
1.5
10
1.0
(Normalized)
D
I , Drain-to-Source Current (A)
V = 50V
DS
15
1
4.0 5.0 6.0 7.0 8.0 9.0
V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3