International Rectifier IRF5Y3315CM Datasheet

PD - 94268
HEXFET
®
POWER MOSFET
THRU-HOLE (TO-257AA)
Product Summary
Part Number BV
DSS
IRF5Y3315CM 150V 0.085 18A*
Fifth Generation HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon unit area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.
These devices are well-suited for applications such as switching power supplies, motor controls, invert­ers, choppers, audio amplifiers and high-energy pulse circuits.
RDS(on) ID
IRF5Y3315CM
150V, N-CHANNEL
TO-257AA
Features:
n Low RDS(on) n Avalanche Energy Ratings n Dynamic dv/dt Rating n Simple Drive Requirements n Ease of Paralleling n Hermetically Sealed n Light Weight
Absolute Maximum Ratings
Parameter Units
ID @ VGS = 10V, TC = 25°C Continuous Drain Current 18*
ID @ VGS = 10V, TC = 100°C Continuous Drain Current 12
I
DM
PD @ TC = 25°C Max. Power Dissipation 75 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt 3.0
T
J
T
STG
* Current is limited by package
For footnotes refer to the last page
Pulsed Drain Current 72
Linear Derating Factor 0.6 W/°C Gate-to-Source Voltage ±20 V Single Pulse Avalanche Energy 94 mJ Avalanche Current 12 A Repetitive Avalanche Energy 7.5 mJ
Operating Junction -55 to 150 Storage Temperature Range Lead Temperature 300 (0.063in./1.6mm from case for 10sec) Weight 4.3 (Typical) g
www.irf.com 1
A
V/ns
o
C
6/22/01
IRF5Y3315CM
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter Min Typ Max Units Test Conditions
BV
DSS
BV
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
LS + L
iss
oss
rss
DSS
Drain-to-Source Breakdown Voltage 150 V VGS = 0V, ID = 250µA
/TJTemperature Coefficient of Breakdown 0.186 V/°C Reference to 25°C, ID = 1.0mA
Voltage Static Drain-to-Source On-State 0.085 VGS = 10V, ID = 12A Resistance Gate Threshold Voltage 2.0 4.0 V VDS = VGS, ID = 250µA Forward Transconductance 12 S ( )VDS = 15V, IDS = 12A Zero Gate Voltage Drain Current 25 V
250 VDS = 120V,
Gate-to-Source Leakage Forward 100 VGS = 20V Gate-to-Source Leakage Reverse -100 VGS = -20V Total Gate Charge 95 VGS =10V, ID = 12A Gate-to-Source Charge 11 nC VDS = 120V Gate-to-Drain (‘Miller’) Charge 47 Turn-On Delay Time 25 VDD = 75V, ID = 12A, Rise Time 60 VGS =10V, RG = 5.1 Turn-Off Delay Time 75 Fall Time 60 Total Inductance 6.8
Input Capacitance 1375 VGS = 0V, VDS = 25V Output Capacitance 300 p F f = 1.0MHz Reverse Transfer Capacitance 160
µA
nA
ns
nH
= 150V ,VGS=0V
DS
VGS = 0V, TJ =125°C
Measured from drain lead (6mm/
0.25in. from package) to source
lead (6mm/0.25in. from package)
Source-Drain Diode Ratings and Characteristics
Parameter Min Typ Max Units T est Conditions
I
Continuous Source Current (Body Diode) 18*
S
I
Pulse Source Current (Body Diode) —— 72
SM
V
Diode Forward Voltage 1.3 V Tj = 25°C, IS = 12A, VGS = 0V
SD
t
Reverse Recovery Time 260 ns Tj = 25°C, IF = 12A, di/dt ≤100A/µs
rr
Q
Reverse Recovery Charge 1.7 µCV
RR
t
Forward Turn-On Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L
on
* Current is limited by package
A
30V
DD
Thermal Resistance
Parameter Min Typ Max Units Test Conditions
thJC
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2 www.irf.com
Junction-to-Case 1.67 °C/W
+ LD.
S
IRF5Y3315CM
100
10
D
I , Drain-to-Source Current (A)
1
0.1 1 10 100
VGS
TOP
15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH
T = 25 C
J
V , Drain-to-Source Voltage (V)
DS
°
Fig 1. Typical Output Characteristics
100
°
T = 25 C
J
°
T = 150 C
J
100
10
D
I , Drain-to-Source Current (A)
1
0.1 1 10 100
VGS
TOP
15V 10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
20µs PULSE WIDTH
T = 150 C
J
V , Drain-to-Source Voltage (V)
DS
4.5V
°
Fig 2. Typical Output Characteristics
2.5
2.0
18A
I =
D
1.5
10
1.0
(Normalized)
D
I , Drain-to-Source Current (A)
V = 50V
DS
15
1
4.0 5.0 6.0 7.0 8.0 9.0
V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature( C)
J
Fig 4. Normalized On-Resistance
V =
GS
°
10V
Vs. Temperature
www.irf.com 3
Loading...
+ 4 hidden pages