PD - 94038A
HEXFET
®
POWER MOSFET
SURFACE MOUNT (SMD-0.5)
Product Summary
Part Number BV
DSS
IRF5NJ9540 -100V 0.117Ω -18A
Fifth Generation HEXFET® power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve the lowest possible on-resistance
per silicon unit area. This benefit, combined with the
fast switching speed and ruggedized device design
that HEXFET power MOSFETs are well known for,
provides the designer with an extremely efficient device
for use in a wide variety of applications.
These devices are well-suited for applications such
as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse
circuits.
RDS(on) ID
IRF5NJ9540
100V, P-CHANNEL
SMD-0.5
Features:
n Low RDS(on)
n Avalanche Energy Ratings
n Dynamic dv/dt Rating
n Simple Drive Requirements
n Ease of Paralleling
n Hermetically Sealed
n Surface Mount
n Light Weight
Absolute Maximum Ratings
Parameter Units
ID @ VGS = -10V, TC = 25°C Continuous Drain Current -18
ID @ VGS = -10V, TC = 100°C Continuous Drain Current -11
I
DM
PD @ TC = 25°C Max. Power Dissipation 75 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt ➂ 4.1
T
J
T
STG
For footnotes refer to the last page
Pulsed Drain Current ➀ -72
Linear Derating Factor 0.6 W/°C
Gate-to-Source Voltage ±20 V
Single Pulse Avalanche Energy ➁ 260 mJ
Avalanche Current ➀ -11 A
Repetitive Avalanche Energy ➀ 7.5 mJ
Operating Junction -55 to 150
Storage Temperature Range
Package Mounting Surface Temperature 300 (for 5 s)
Weight 1.0 (Typical) g
www.irf.com 1
A
V/ns
o
C
7/13/01
IRF5NJ9540
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter Min Typ Max Units Test Conditions
BV
DSS
∆BV
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
LS + L
DSS
D
Drain-to-Source Breakdown Voltage -100 — — V VGS = 0V, ID = -250µA
/∆TJTemperature Coefficient of Breakdown — -0.104 — V/°C Reference to 25°C, ID = -1.0mA
Voltage
Static Drain-to-Source On-State — — 0.117 Ω VGS = 10V, ID = -11A
Resistance
Gate Threshold Voltage -2.0 — -4.0 V VDS = VGS, ID = -250µA
Forward Transconductance 5.0 — — S ( )VDS = -50V, IDS = -11A ➃
Zero Gate Voltage Drain Current — — - 25 V
— — -250 VDS = -80V,
Gate-to-Source Leakage Forward — — -100 VGS = -20V
Gate-to-Source Leakage Reverse — — 100 VGS = 20V
Total Gate Charge — — 109 VGS =-10V, ID = -11A
Gate-to-Source Charge — — 19 nC VDS = -80V
Gate-to-Drain (‘Miller’) Charge — — 5 3
Turn-On Delay Time — — 29 VDD = -50V, ID = -11A,
Rise Time — — 135 VGS =-10V, RG = 5.1Ω
Turn-Off Delay Time — — 87
Fall Time — — 84
Total Inductance — 4.0 —
Ω
µA
nA
ns
nH
drain pad to center of source pad
= -100V ,VGS=0V
DS
VGS = 0V, TJ =125°C
Measured from the center of
➃
C
iss
C
oss
C
rss
Input Capacitance — 1340 — VGS = 0V, VDS = -25V
Output Capacitance — 428 — pF f = 1.0MHz
Reverse Transfer Capacitance — 246 —
Source-Drain Diode Ratings and Characteristics
Parameter Min Typ Max Units Test Conditions
I
Continuous Source Current (Body Diode) — — - 18
S
I
Pulse Source Current (Body Diode) ➀ — — -72
SM
V
Diode Forward Voltage — — -1.6 V Tj = 25°C, IS = -11A, VGS = 0V ➃
SD
t
Reverse Recovery Time — — 220 n s Tj = 25°C, IF = -11A, di/dt ≤ -100A/µs
rr
Q
Reverse Recovery Charge — — 1200 nC VDD ≤ -50V ➃
RR
t
Forward Turn-On Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L
on
A
Thermal Resistance
Parameter Min Typ Max Units Test Conditions
R
thJC
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2 www.irf.com
Junction-to-Case — — 1.67 °C/W
+ LD.
S
IRF5NJ9540
100
10
1
D
-I , Drain-to-Source Current (A)
0.1
0.1 1 10 100
VGS
TOP
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
BOTTOM
-4.5V
-4.5V
20µs PULSE WIDTH
T = 25 C
J
-V , Drain-to-Source Voltage (V)
DS
°
Fig 1. Typical Output Characteristics
100
°
T = 25 C
J
°
T = 150 C
J
10
100
10
1
D
-I , Drain-to-Source Current (A)
0.1
0.1 1 10 100
VGS
TOP
-15V
-10V
-8.0V
-7.0V
-6.0V
-5.5V
-5.0V
BOTTOM
-4.5V
-4.5V
20µs PULSE WIDTH
T = 150 C
J
-V , Drain-to-Source Voltage (V)
DS
°
Fig 2. Typical Output Characteristics
2.5
2.0
1.5
-18A
I =
D
1.0
1
D
-I , Drain-to-Source Current (A)
15
V = -25V
DS
0.1
4 6 8 10 12 14
-V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
(Normalized)
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature( C)
J
Fig 4. Normalized On-Resistance
V =
-10V
GS
°
Vs. Temperature
www.irf.com 3