Intel Corporation KU80960CA-16, KU80960CA-33 Datasheet

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. © INTEL CORPORATION, 1993 November 1993 Order Number: 270727-006
80960CA-33, -25, -16
32-BIT HIGH-PERFORMANCE EMBEDDED PROCESSOR
• Two Instructions/Clock Sustained Execution
• Four 59 Mbytes/s DMA Channels with Data Chaining
32-bit Parallel Architecture
— Two Instructions/clock Execution — Load/Store Architecture — Sixteen 32-bit Global Registers — Sixteen 32-bit Local Registers — Manipulates 64-bit Bit Fields — 11 Addressing Modes — Full Parallel Fault Model — Supervisor Protection Model
Fast Procedure Call/Return Model
— Full Procedure Call in 4 Clocks
On-Chip Register Cache
— Caches Registers on Call/Ret — Minimum of 6 Frames Provided — Up to 15 Programmable Frames
On-Chip Instruction Cache
— 1 Kbyte Two-Way Set Associative — 128-bit Path to Instruction Sequencer — Cache-Lock Modes — Cache-Off Mode
High Bandwidth On-Chip Data RAM
— 1 Kbyte On-Chip Data RAM — Sustains 128 bits per Clock Access
Four On-Chip DMA Channels
— 59 Mbytes/s Fly-by Transfers — 32 Mbytes/s Two-Cycle Transfers — Data Chaining — Data Packing/Unpacking — Programmable Priority Method
32-Bit Demultiplexed Burst Bus
— 128-bit Internal Data Paths to and
from Registers — Burst Bus for DRAM Interfacing — Address Pipelining Option — Fully Programmable Wait States — Supports 8-, 16- or 32-bit Bus Widths — Supports Unaligned Accesses — Supervisor Protection Pin
Selectable Big or Little Endian Byte
Ordering
High-Speed Interrupt Controller
— Up to 248 External Interrupts — 32 Fully Programmable Priorities — Multi-mode 8-bit Interrupt Port — Four Internal DMA Interrupts — Separate, Non-maskable Interrupt Pin — Context Switch in 750 ns Typical
ii
CONTENTS PAGE
1.0 PURPOSE ..................................................................................................................................................1
2.0 80960CA OVERVIEW.................................................................................................................................1
2.1 The C-Series Core ..............................................................................................................................2
2.2 Pipelined, Burst Bus ........................................................................................................................... 2
2.3 Flexible DMA Controller ......................................................................................................................2
2.4 Priority Interrupt Controller .................................................................................................................. 2
2.5 Instruction Set Summary .................................................................................................................... 3
3.0 PACKAGE INFORMATION.........................................................................................................................4
3.1 Package Introduction ..........................................................................................................................4
3.2 Pin Descriptions ..................................................................................................................................4
3.3 80960CA Mechanical Data ............................................................................................................... 11
3.3.1 80960CA PGA Pinout ............................................................................................................11
3.3.2 80960CA PQFP Pinout ..........................................................................................................15
3.4 Package Thermal Specifications ......................................................................................................18
3.5 Stepping Register Information ..........................................................................................................20
3.6 Suggested Sources for 80960CA Accessories..................................................................................20
4.0 ELECTRICAL SPECIFICATIONS.............................................................................................................21
4.1 Absolute Maximum Ratings ..............................................................................................................21
4.2 Operating Conditions ........................................................................................................................21
4.3 Recommended Connections ............................................................................................................21
4.4 DC Specifications .............................................................................................................................22
4.5 AC Specifications ..............................................................................................................................23
4.5.1 AC Test Conditions ................................................................................................................29
4.5.2 AC Timing Waveforms ...........................................................................................................29
4.5.3 Derating Curves .....................................................................................................................33
5.0 RESET, BACKOFF AND HOLD ACKNOWLEDGE .................................................................................35
6.0 BUS WAVEFORMS .................................................................................................................................36
7.0 REVISION HISTORY ................................................................................................................................64
80960CA-33, -25, -16
32-BIT HIGH-PERFORMANCE EMBEDDED PROCESSOR
iii
CONTENTS PAGE
LIST OF FIGURES
Figure 1 80960CA Block Diagram ..............................................................................................................1
Figure 2 80960CA PGA Pinout—View from Top (Pins Facing Down) ......................................................13
Figure 3 80960CA PGA Pinout —View from Bottom (Pins Facing Up) ....................................................14
Figure 4 80960CA PQFP Pinout (View from Top Side) ............................................................................17
Figure 5 Measuring 80960CA PGA and PQFP Case Temperature ..........................................................18
Figure 6 Register g0 .................................................................................................................................20
Figure 7 AC Test Load ..............................................................................................................................29
Figure 8 Input and Output Clocks Waveform ............................................................................................ 29
Figure 9 CLKIN Waveform ........................................................................................................................29
Figure 10 Output Delay and Float Waveform .............................................................................................30
Figure 11 Input Setup and Hold Waveform ................................................................................................30
Figure 12 NMI
, XINT7:0 Input Setup and Hold Waveform .......................................................................... 31
Figure 13 Hold Acknowledge Timings ........................................................................................................31
Figure 14 Bus Backoff (BOFF
) Timings ...................................................................................................... 32
Figure 15 Relative Timings Waveforms ......................................................................................................33
Figure 16 Output Delay or Hold vs. Load Capacitance ..............................................................................33
Figure 17 Rise and Fall Time Derating at Highest Operating Temperature and Minimum V
CC
..................34
Figure 18 I
CC
vs. Frequency and Temperature ...........................................................................................34
Figure 19 Cold Reset Waveform ................................................................................................................36
Figure 20 Warm Reset Waveform ..............................................................................................................37
Figure 21 Entering the ONCE State ...........................................................................................................38
Figure 22 Clock Synchronization in the 2-x Clock Mode ............................................................................ 39
Figure 23 Clock Synchronization in the 1-x Clock Mode ............................................................................ 39
Figure 24 Non-Burst, Non-Pipelined Requests Without Wait States ..........................................................40
Figure 25 Non-Burst, Non-Pipelined Read Request With Wait States .......................................................41
Figure 26 Non-Burst, Non-Pipelined Write Request With Wait States .......................................................42
Figure 27 Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus ........................................43
Figure 28 Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus .............................................44
Figure 29 Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus .......................................45
Figure 30 Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus .............................................46
Figure 31 Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus ............................................47
Figure 32 Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus ...............................................48
Figure 33 Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus .......................................49
Figure 34 Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus ............................................50
Figure 35 Burst, Pipelined Read Request Without Wait States, 32-Bit Bus ............................................... 51
Figure 36 Burst, Pipelined Read Request With Wait States, 32-Bit Bus..................................................... 52
Figure 37 Burst, Pipelined Read Request With Wait States, 16-Bit Bus..................................................... 53
Figure 38 Burst, Pipelined Read Request With Wait States, 8-Bit Bus....................................................... 54
iv
CONTENTS PAGE
LIST OF FIGURES (continued)
Figure 39 Using External READY
...............................................................................................................55
Figure 40 Terminating a Burst with BTERM
...............................................................................................56
Figure 41 BOFF
Functional Timing ............................................................................................................57
Figure 42 HOLD Functional Timing ............................................................................................................58
Figure 43 DREQ
and DACK Functional Timing ..........................................................................................59
Figure 44 EOP
Functional Timing ..............................................................................................................59
Figure 45 Terminal Count Functional Timing .............................................................................................. 60
Figure 46 FAIL
Functional Timing ...............................................................................................................60
Figure 47 A Summary of Aligned and Unaligned Transfers for Little Endian Regions ................................61
Figure 48 A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued) ............ 62
Figure 49 Idle Bus Operation ......................................................................................................................63
LIST OF TABLES
Table 1 80960CA Instruction Set ..............................................................................................................3
Table 2 Pin Description Nomenclature ......................................................................................................4
Table 3 80960CA Pin Description — External Bus Signals ......................................................................5
Table 4 80960CA Pin Description — Processor Control Signals ..............................................................8
Table 5 80960CA Pin Description — DMA and Interrupt Unit Control Signals .......................................10
Table 6 80960CA PGA Pinout — In Signal Order ................................................................................... 11
Table 7 80960CA PGA Pinout — In Pin Order ........................................................................................12
Table 8 80960CA PQFP Pinout — In Signal Order .................................................................................15
Table 9 80960CA PQFP Pinout — In Pin Order .....................................................................................16
Table 10 Maximum T
A
at Various Airflows inoC (PGA Package Only) .....................................................18
Table 11 80960CA PGA Package Thermal Characteristics ......................................................................19
Table 12 80960CA PQFP Package Thermal Characteristics ....................................................................19
Table 13 Die Stepping Cross Reference ...................................................................................................20
Table 14 Operating Conditions (80960CA-33, -25, -16) ............................................................................21
Table 15 DC Characteristics ..................................................................................................................... 22
Table 16 80960CA AC Characteristics (33 MHz) ......................................................................................23
Table 17 80960CA AC Characteristics (25 MHz) ......................................................................................25
Table 18 80960CA AC Characteristics (16 MHz) ......................................................................................27
Table 19 Reset Conditions ........................................................................................................................ 35
Table 20 Hold Acknowledge and Backoff Conditions ................................................................................35
1
80960CA-33, -25, -16
1.0 PURPOSE
This document provides electrical characteristics for the 33, 25 and 16 MHz versions of the 80960CA. For a detailed description of any 80960CA functional topic—other than parametric performance—consult the 80960CA Product Overview (Order No. 270669) or the i960
CA Microprocessor User’s Manual
(Order No. 270710). To obtain data sheet updates and errata, please call Intel’s FaxBACK
data-on­demand system (1-800-628-2283 or 916-356-3105). Other information can be obtained from Intel’s tech­nical BBS (916-356-3600).
2.0 80960CA OVERVIEW
The 80960CA is the second-generation member of the 80960 family of embedded processors. The 80960CA is object code compatible with the 32-bit 80960 Core Architecture while including Special Function Register extensions to control on-chip peripherals and instruction set extensions to shift 64­bit operands and configure on-chip hardware. Multiple 128-bit internal buses, on-chip instruction caching and a sophisticated instruction scheduler allow the processor to sustain execution of two instructions every clock and peak at execution of three instructions per clock.
A 32-bit demultiplexed and pipelined burst bus provides a 132 Mbyte/s bandwidth to a system’s high-speed external memory sub-system. In addition, the 80960CA’s on-chip caching of instruc­tions, procedure context and critical program data substantially decouple system performance from the wait states associated with accesses to the system’s slower, cost sensitive, main memory subsystem.
The 80960CA bus controller integrates full wait state and bus width control for highest system perfor­mance with minimal system design complexity. Unaligned access and Big Endian byte order support reduces the cost of porting existing applications to the 80960CA.
The processor also integrates four complete data­chaining DMA channels and a high-speed interrupt controller on-chip. DMA channels perform: single­cycle or two-cycle transfers, data packing and unpacking and data chaining. Block transfers—in addition to source or destination synchronized trans­fers—are provided.
The interrupt controller provides full programmability of 248 interrupt sources into 32 priority levels with a typical interrupt task switch (”latency”) time of 750 ns.
Figure 1. 80960CA Block Diagram
Execution
Unit
Programmable
Bus
Controller
Bus Request
Queues
Six-port
Register File
64-Bit SRC1 Bus
64-Bit SRC2 Bus
64-Bit
DST Bus
32-Bit
Base Bus
128-Bit
Load Bus
128-Bit
Store Bus
Instruction Prefetch Queue
Instruction Cache
(1 KByte, Two-way
Set Associative)
128-BIT CACHE BUS
Interrupt Controller
Control
Address Data
Memory-side Machine Bus
Register-side Machine Bus
Parallel Instruction Scheduler
Memory Region
Configuration
Multiply/Divide
Unit
Four-Channel
DMA Controller
Interrupt
Port
1 KByte
5 to 15 Sets
Register Cache
Data RAM
Address
Generation Unit
F_CX001A
DMA Port
2
80960CA-33, -25, -16
2.1 The C-Series Core
The C-Series core is a very high performance microarchitectural implementation of the 80960 Core Architecture. The C-Series core can sustain execu­tion of two instructions per clock (66 MIPs at 33 MHz). To achieve this level of performance, Intel has incorporated state-of-the-art silicon technology and innovative microarchitectural constructs into the implementation of the C-Series core. Factors that contribute to the core’s performance include:
• Parallel instruction decoding allows issuance of up to three instructions per clock
• Single-clock execution of most instructions
• Parallel instruction decode allows sustained, simultaneous execution of two single-clock instructions every clock cycle
• Efficient instruction pipeline minimizes pipeline break losses
• Register and resource scoreboarding allow simul­taneous multi-clock instruction execution
• Branch look-ahead and prediction allows many branches to execute with no pipeline break
• Local Register Cache integrated on-chip caches Call/Return context
• Two-way set associative, 1 Kbyte integrated instruction cache
• 1 Kbyte integrated Data RAM sustains a four­word (128-bit) access every clock cycle
2.2 Pipelined, Burst Bus
A 32-bit high performance bus controller interfaces the 80960CA to external memory and peripherals. The Bus Control Unit features a maximum transfer rate of 132 Mbytes per second (at 33 MHz). Inter­nally programmable wait states and 16 separately configurable memory regions allow the processor to interface with a variety of memory subsystems with a minimum of system complexity and a maximum of performance. The Bus Controller’s main features include:
• Demultiplexed, Burst Bus to exploit most efficient DRAM access modes
• Address Pipelining to reduce memory cost while maintaining performance
• 32-, 16- and 8-bit modes for I/O interfacing ease
• Full internal wait state generation to reduce system cost
• Little and Big Endian support to ease application development
• Unaligned access support for code portability
• Three-deep request queue to decouple the bus from the core
2.3 Flexible DMA Controller
A four-channel DMA controller provides high speed DMA control for data transfers involving peripherals and memory. The DMA provides advanced features such as data chaining, byte assembly and disas­sembly and a high performance fly-by mode capable of transfer speeds of up to 59 Mbytes per second at 33 MHz. The DMA controller features a performance and flexibility which is only possible by integrating the DMA controller and the 80960CA core.
2.4 Priority Interrupt Controller
A programmable-priority interrupt controller manages up to 248 external sources through the 8­bit external interrupt port. The Interrupt Unit also handles the four internal sources from the DMA controller and a single non-maskable interrupt input. The 8-bit interrupt port can also be configured to provide individual interrupt sources that are level or edge triggered.
Interrupts in the 80960CA are prioritized and signaled within 270 ns of the request. If the interrupt is of higher priority than the processor priority, the context switch to the interrupt routine typically is complete in another 480 ns. The interrupt unit provides the mechanism for the low latency and high throughput interrupt service which is essential for embedded applications.
3
80960CA-33, -25, -16
2.5 Instruction Set Summary
Table 1 summarizes the 80960CA instruction set by logical groupings. See the i960 CA Microprocessor User’s Manual for a complete description of the instruction set.
Table 1. 80960CA Instruction Set
Data
Movement
Arithmetic Logical
Bit and Bit Field
and Byte
Load Store Move Load Address
Add Subtract Multiply Divide Remainder Modulo Shift *Extended Shift Extended Multiply Extended Divide Add with Carry Subtract with Carry Rotate
And Not And And Not Or Exclusive Or Not Or Or Not Nor Exclusive Nor Not Nand
Set Bit Clear Bit Not Bit Alter Bit Scan For Bit Span Over Bit Extract Modify Scan Byte for Equal
Comparison Branch Call/Return Fault
Compare Conditional Compare Compare and
Increment Compare and
Decrement Test Condition Code Check Bit
Unconditional Branch Conditional Branch Compare and Branch
Call Call Extended Call System Return Branch and Link
Conditional Fault Synchronize Faults
Debug
Processor
Management
Atomic
Modify Trace Controls Mark Force Mark
Flush Local Registers Modify Arithmetic
Controls Modify Process
Controls *System Control *DMA Control
Atomic Add Atomic Modify
NOTES:
Instructions marked by (*) are 80960CA extensions to the 80960 instruction set.
4
80960CA-33, -25, -16
3.0 PACKAGE INFORMATION
3.1 Package Introduction
This section describes the pins, pinouts and thermal characteristics for the 80960CA in the 168-pin Ceramic Pin Grid Array (PGA) package and the 196­pin Plastic Quad Flat Package (PQFP). For complete package specifications and information, see the Packaging Handbook (Order No. 240800).
3.2 Pin Descriptions
The 80960CA pins are described in this section. Table 2 presents the legend for interpreting the pin descriptions in the following tables. Pins associated with the 32-bit demultiplexed processor bus are described in Table 3. Pins associated with basic processor configuration and control are described in Table 4. Pins associated with the 80960CA DMA Controller and Interrupt Unit are described in Table
5. All pins float while the processor is in the ONCE
mode.
Table 2. Pin Description Nomenclature
Symbol Description
I Input only pin
O Output only pin
I/O Pin can be either an input or output
Pins “must be” connected as described
S(...) Synchronous. Inputs must meet setup
and hold times relative to PCLK2:1 for proper operation. All outputs are synchronous to PCLK2:1.
S(E) Edge sensitive input S(L) Level sensitive input
A(...) Asynchronous. Inputs may be
asynchronous to PCLK2:1.
A(E) Edge sensitive input A(L) Level sensitive input
H(...) While the processor’s bus is in the
Hold Acknowledge or Bus Backoff state, the pin:
H(1) is driven to V
CC
H(0) is driven to V
SS
H(Z) floats H(Q) continues to be a valid input
R(...) While the processor’s RESET
pin is low,
the pin:
R(1) is driven to V
CC
R(0) is driven to V
SS
R(Z) floats R(Q) continues to be a valid output
5
80960CA-33, -25, -16
Table 3. 80960CA Pin Description — External Bus Signals (Sheet 1 of 3)
Name Type Description
A31:2 O
S H(Z) R(Z)
ADDRESS BUS carries the physical address’ upper 30 bits. A31 is the most significant address bit; A2 is the least significant. During a bus access, A31:2 identify all external addresses to word (4-byte) boundaries. The byte enable signals indicate the selected byte in each word. During burst accesses, A3:2 increment to indicate successive data cycles.
D31:0 I/O
S(L) H(Z) R(Z)
DATA BUS carries 32-, 16- or 8-bit data quantities depending on bus width configu­ration. The least significant bit of the data is carried on D0 and the most significant on D31. When the bus is configured for 8-bit data, the lower 8 data lines, D7:0 are used. For 16-bit data bus widths, D15:0 are used. For 32-bit bus widths the full data bus is used.
BE3:0
O
S H(Z) R(1)
BYTE ENABLES select which of the four bytes addressed by A31:2 are active during an access to a memory region configured for a 32-bit data-bus width. BE3
applies to
D31:24; BE2
applies to D23:16; BE1 applies to D15:8 BE0 applies to D7:0.
32-bit bus: BE3
–Byte Enable 3 –enable D31:24
BE2
–Byte Enable 2 –enable D23:16
BE1
–Byte Enable 1 –enable D15:8
BE0
–Byte Enable 0 –enable D7:0
For accesses to a memory region configured for a 16-bit data-bus width, the processor uses the BE3
, BE1 and BE0 pins as BHE, A1 and BLE respectively.
16-bit bus: BE3
–Byte High Enable (BHE) –enable D15:8
BE2
–Not used (driven high or low)
BE1
–Address Bit 1 (A1)
BE0
–Byte Low Enable (BLE) –enable D7:0
For accesses to a memory region configured for an 8-bit data-bus width, the processor uses the BE1
and BE0 pins as A1 and A0 respectively.
8-bit bus: BE3
–Not used (driven high or low)
BE2
–Not used (driven high or low)
BE1
–Address Bit 1 (A1)
BE0
–Address Bit 0 (A0)
W/R
O
S H(Z) R(0)
WRITE/READ is asserted for read requests and deasserted for write requests. The W/R
signal changes in the same clock cycle as ADS. It remains valid for the entire
access in non-pipelined regions. In pipelined regions, W/R
is not guaranteed to be
valid in the last cycle of a read access.
ADS
O
S H(Z) R(1)
ADDRESS STROBE indicates a valid address and the start of a new bus access. ADS
is asserted for the first clock of a bus access.
6
80960CA-33, -25, -16
READY I
S(L) H(Z) R(Z)
READY is an input which signals the termination of a data transfer. READY is used to indicate that read data on the bus is valid or that a write-data transfer has completed. The READY
signal works in conjunction with the internally programmed wait-state
generator. If READY
is enabled in a region, the pin is sampled after the programmed
number of wait-states has expired. If the READY
pin is deasserted, wait states
continue to be inserted until READY
becomes asserted. This is true for the N
RAD
,
N
RDD
, N
WAD
and N
WDD
wait states. The N
XDA
wait states cannot be extended.
BTERM
I
S(L) H(Z) R(Z)
BURST TERMINATE is an input which breaks up a burst access and causes another address cycle to occur. The BTERM
signal works in conjunction with the internally
programmed wait-state generator. If READY
and BTERM are enabled in a region, the
BTERM
pin is sampled after the programmed number of wait states has expired.
When BTERM
is asserted, a new ADS signal is generated and the access is
completed. The READY
input is ignored when BTERM is asserted. BTERM must be
externally synchronized to satisfy BTERM
setup and hold times.
WAIT
O
S H(Z) R(1)
WAIT indicates internal wait state generator status. WAIT is asserted when wait states are being caused by the internal wait state generator and not by the READY
or
BTERM
inputs. WAIT can be used to derive a write-data strobe. WAIT can also be
thought of as a READY
output that the processor provides when it is inserting wait
states.
BLAST
O
S H(Z) R(0)
BURST LAST indicates the last transfer in a bus access. BLAST
is asserted in the last data transfer of burst and non-burst accesses after the wait state counter reaches zero. BLAST
remains asserted until the clock following the last cycle of the last data
transfer of a bus access. If the READY
or BTERM input is used to extend wait states,
the BLAST
signal remains asserted until READY or BTERM terminates the access.
DT/R
O
S H(Z) R(0)
DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R
is used in
conjunction with DEN
to provide control for data transceivers attached to the external
bus. When DT/R
is asserted, the signal indicates that the processor receives data.
Conversely, when deasserted, the processor sends data. DT/R
changes only while
DEN
is high.
DEN
O
S H(Z) R(1)
DATA ENABLE indicates data cycles in a bus request. DEN
is asserted at the start of the bus request first data cycle and is deasserted at the end of the last data cycle. DEN
is used in conjunction with DT/R to provide control for data transceivers attached
to the external bus. DEN
remains asserted for sequential reads from pipelined
memory regions. DEN
is deasserted when DT/R changes.
LOCK
O
S H(Z) R(1)
BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK may be used to prevent external agents from accessing memory which is currently involved in an atomic operation. LOCK
is asserted in the first clock of an atomic operation and deasserted in the clock cycle following the last bus access for the atomic operation. To allow the most flexibility for memory system enforcement of locked accesses, the processor acknowledges a bus hold request when LOCK
is
asserted. The processor performs DMA transfers while LOCK
is active.
HOLD I
S(L) H(Z) R(Z)
HOLD REQUEST signals that an external agent requests access to the external bus. The processor asserts HOLDA after completing the current bus request. HOLD, HOLDA and BREQ are used together to arbitrate access to the processor’s external bus by external bus agents.
Table 3. 80960CA Pin Description — External Bus Signals (Sheet 2 of 3)
Name Type Description
7
80960CA-33, -25, -16
BOFF I
S(L) H(Z) R(Z)
BUS BACKOFF, when asserted, suspends the current access and causes the bus pins to float. When BOFF
is deasserted, the ADS signal is asserted on the next clock
cycle and the access is resumed.
HOLDA O
S
H(1)
R(Q)
HOLD ACKNOWLEDGE indicates to a bus requestor that the processor has relin­quished control of the external bus. When HOLDA is asserted, the external address bus, data bus and bus control signals are floated. HOLD, BOFF
, HOLDA and BREQ are used together to arbitrate access to the processor’s external bus by external bus agents. Since the processor grants HOLD requests and enters the Hold Acknowledge state even while RESET
is asserted, the state of the HOLDA pin is independent of the
RESET
pin.
BREQ O
S
H(Q)
R(0)
BUS REQUEST is asserted when the bus controller has a request pending. BREQ can be used by external bus arbitration logic in conjunction with HOLD and HOLDA to determine when to return mastership of the external bus to the processor.
D/C
O
S H(Z) R(Z)
DATA OR CODE is asserted for a data request and deasserted for instruction requests. D/C
has the same timing as W/R.
DMA
O
S H(Z) R(Z)
DMA ACCESS indicates whether the bus request was initiated by the DMA controller. DMA
is asserted for any DMA request. DMA is deasserted for all other requests.
SUP
O
S H(Z) R(Z)
SUPERVISOR ACCESS indicates whether the bus request is issued while in supervisor mode. SUP
is asserted when the request has supervisor privileges and is
deasserted otherwise. SUP
can be used to isolate supervisor code and data
structures from non-supervisor requests.
Table 3. 80960CA Pin Description — External Bus Signals (Sheet 3 of 3)
Name Type Description
8
80960CA-33, -25, -16
Table 4. 80960CA Pin Description — Processor Control Signals (Sheet 1 of 2)
Name Type Description
RESET
I
A(L) H(Z) R(Z)
RESET causes the chip to reset. When RESET is asserted, all external signals return to the reset state. When RESET
is deasserted, initialization begins. When
the 2-x clock mode is selected, RESET
must remain asserted for 32 CLKIN cycles before being deasserted to guarantee correct processor initialization. When the 1-x clock mode is selected, RESET
must remain asserted for 10,000 CLKIN cycles before being deasserted to guarantee correct processor initialization. The CLKMODE pin selects 1-x or 2-x input clock division of the CLKIN pin.
The processor’s Hold Acknowledge bus state functions while the chip is reset. If the processor’s bus is in the Hold Acknowledge state when RESET
is asserted, the processor will internally reset, but maintains the Hold Acknowledge state on external pins until the Hold request is removed. If a Hold request is made while the processor is in the reset state, the processor bus will grant HOLDA and enter the Hold Acknowledge state.
FAIL
O
S
H(Q)
R(0)
FAIL indicates failure of the processor’s self-test performed at initialization. When RESET
is deasserted and the processor begins initialization, the FAIL pin is asserted. An internal self-test is performed as part of the initialization process. If this self-test passes, the FAIL
pin is deasserted; otherwise it remains asserted. The
FAIL
pin is reasserted while the processor performs an external bus self-confidence
test. If this self-test passes, the processor deasserts the FAIL
pin and branches to
the user’s initialization routine; otherwise the FAIL
pin remains asserted. Internal
self-test and the use of the FAIL
pin can be disabled with the STEST pin.
STEST I
S(L) H(Z) R(Z)
SELF TEST causes the processor’s internal self-test feature to be enabled or disabled at initialization. STEST is read on the rising edge of RESET
. When asserted, the processor’s internal self-test and external bus confidence tests are performed during processor initialization. When deasserted, only the bus confidence tests are performed during initialization.
ONCE
I
A(L) H(Z) R(Z)
ON CIRCUIT EMULATION, when asserted, causes all outputs to be floated. ONCE is continuously sampled while RESET is low and is latched on the rising edge of RESET
. To place the processor in the ONCE state:
(1) assert RESET
and ONCE (order does not matter)
(2) wait for at least 16 CLKIN periods in 2-x mode—or 10,000 CLKIN periods in
1-x mode—after V
CC
and CLKIN are within operating specifications (3) deassert RESET (4) wait at least 32 CLKIN periods
(The processor will now be latched in the ONCE state as long as RESET
is high.)
To exit the ONCE state, bring V
CC
and CLKIN to operating conditions, then assert
RESET
and bring ONCE high prior to deasserting RESET .
CLKIN must operate within the specified operating conditions of the processor until Step 4 above has been completed. CLKIN may then be changed to DC to achieve the lowest possible ONCE mode leakage current.
ONCE
can be used by emulator products or for board testers to effectively make an
installed processor transparent in the board.
9
80960CA-33, -25, -16
CLKIN I
A(E) H(Z) R(Z)
CLOCK INPUT is an input for the external clock needed to run the processor. The external clock is internally divided as prescribed by the CLKMODE pin to produce PCLK2:1.
CLKMODE I
A(L) H(Z) R(Z)
CLOCK MODE selects the division factor applied to the external clock input (CLKIN). When CLKMODE is high, CLKIN is divided by one to create PCLK2:1 and the processor’s internal clock. When CLKMODE is low, CLKIN is divided by two to create PCLK2:1 and the processor’s internal clock. CLKMODE should be tied high or low in a system as the clock mode is not latched by the processor. If left unconnected, the processor will internally pull the CLKMODE pin low, enabling the 2-x clock mode.
PCLK2:1 O
S H(Q) R(Q)
PROCESSOR OUTPUT CLOCKS provide a timing reference for all processor inputs and outputs. All input and output timings are specified in relation to PCLK2 and PCLK1. PCLK2 and PCLK1 are identical signals. Two output pins are provided to allow flexibility in the system’s allocation of capacitive loading on the clock. PCLK2:1 may also be connected at the processor to form a single clock signal.
V
SS
GROUND connections must be connected externally to a VSS board plane.
V
CC
POWER connections must be connected externally to a VCC board plane.
V
CCPLL
V
CCPLL
is a separate VCC supply pin for the phase lock loop used in 1-x clock mode.
Connecting a simple lowpass filter to V
CCPLL
may help reduce clock jitter (TCP) in
noisy environments. Otherwise, V
CCPLL
should be connected to VCC. This pin is implemented starting with the D-stepping. See Table 13 for die stepping information.
NC NO CONNECT pins must not be connected in a system.
Table 4. 80960CA Pin Description — Processor Control Signals (Sheet 2 of 2)
Name Type Description
10
80960CA-33, -25, -16
Table 5. 80960CA Pin Description — DMA and Interrupt Unit Control Signals
Name Type Description
DREQ3:0
I
A(L) H(Z) R(Z)
DMA REQUEST causes a DMA transfer to be requested. Each of the four signals requests a transfer on a single channel. DREQ0
requests channel 0, DREQ1 requests channel 1, etc. When two or more channels are requested simulta­neously, the channel with the highest priority is serviced first. The channel priority mode is programmable.
DACK3:0
O
S H(1) R(1)
DMA ACKNOWLEDGE indicates that a DMA transfer is being executed. Each of the four signals acknowledges a transfer for a single channel. DACK0
acknowl-
edges channel 0, DACK1
acknowledges channel 1, etc. DACK3:0 are asserted
when the requesting device of a DMA is accessed.
EOP
/TC3:0 I/O
A(L)
H(Z/Q)
R(Z)
END OF PROCESS/TERMINAL COUNT can be programmed as either an input (EOP3:0
) or as an output (TC3:0), but not both. Each pin is individually program-
mable. When programmed as an input, EOPx
causes the termination of a current
DMA transfer for the channel corresponding to the EOPx
pin. EOP0 corresponds
to channel 0, EOP1
corresponds to channel 1, etc. When a channel is configured for source and destination chaining, the EOP pin for that channel causes termination of only the current buffer transferred and causes the next buffer to be transferred. EOP3:0
are asynchronous inputs.
When programmed as an output, the channel’s TCx
pin indicates that the channel
byte count has reached 0 and a DMA has terminated. TCx
is driven with the same
timing as DACKx
during the last DMA transfer for a buffer. If the last bus request is
executed as multiple bus accesses, TCx
will stay asserted for the entire bus
request.
XINT7:0
I
A(E/L)
H(Z) R(Z)
EXTERNAL INTERRUPT PINS cause interrupts to be requested. These pins can be configured in three modes:
Dedicated Mode: each pin is a dedicated external interrupt source. Dedicated
inputs can be individually programmed to be level (low) or edge (falling) activated.
Expanded Mode: the eight pins act together as an 8-bit vectored interrupt
source. The interrupt pins in this mode are level activat­ed.Since the interrupt pins are active low, the vector number requested is the one’s complement of the positive logic value place on the port. This eliminates glue logic to interface to combinational priority encoders which output negative logic.
Mixed Mode: XINT7:5
are dedicated sources and XINT4:0 act as the five most significant bits of an expanded mode vector. The least significant bits are set to 010 internally.
NMI
I
A(E) H(Z) R(Z)
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI
is the highest priority interrupt recognized. NMI is an edge (falling) activated
source.
11
80960CA-33, -25, -16
3.3 80960CA Mechanical Data
3.3.1 80960CA PGA Pinout
Tables 6 and 7 list the 80960CA pin names with package location. Figure 2 depicts the complete
80960CA PGA pinout as viewed from the top side of
the component (i.e., pins facing down). Figure 3
shows the complete 80960CA PGA pinout as viewed
from the pin-side of the package (i.e., pins facing up).
See Section 4.0, ELECTRICAL SPECIFICATIONS
for specifications and recommended connections.
Table 6. 80960CA PGA Pinout — In Signal Order
Address Bus Data Bus Bus Control Processor Control I/O
Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A31 S15 D31 R3 BE3
S5 RESET A16 DREQ3 A7
A30 Q13 D30 Q5 BE2
S6 DREQ2 B6
A29 R14 D29 S2 BE1
S7 FAIL A2 DREQ1 A6
A28 Q14 D28 Q4 BE0
R9 DREQ0 B5 A27 S16 D27 R2 STEST B2 A26 R15 D26 Q3 W/R
S10 DACK3 A10 A25 S17 D25 S1 ONCE
C3 DACK2 A9
A24 Q15 D24 R1 ADS
R6 DACK1 A8 A23 R16 D23 Q2 CLKIN C13 DACK0
B8
A22 R17 D22 P3 READY
S3 CLKMODE C14 A21 Q16 D21 Q1 BTERM
R4 PLCK1 B14 EOP/TC3 A14 A20 P15 D20 P2 PLCK2 B13 EOP
/TC2 A13
A19 P16 D19 P1 WAIT
S12 EOP/TC1 A12 A18 Q17 D18 N2 BLAST
S8 V
SS
EOP/TC0 A11 A17 P17 D17 N1 Location A16 N16 D16 M1 DT/R
S11 C7, C8, C9, C10,
C11, C12, F15, G3, G15, H3, H15, J3, J15, K3, K15, L3, L15, M3, M15, Q7, Q8, Q9, Q10, Q11
XINT7
C17
A15 N17 D15 L1 DEN
S9 XINT6 C16
A14 M17 D14 L2 XINT5
B17
A13 L16 D13 K1 LOCK
S14 XINT4 C15
A12 L17 D12 J1 XINT3
B16
A11 K17 D11 H1 V
CC
XINT2 A17 A10 J17 D10 H2 HOLD R5 Location XINT1
A15
A9 H17 D9 G1 HOLDA S4 B7, B9, B11, B12,
C6, E15, F3, F16, G2, H16, J2, J16, K2, K16, M2, M16, N3, N15, Q6, R7, R8, R10, R11
XINT0
B15
A8 G17 D8 F1 BREQ
R13
A7 G16 D7 E1 NMI
D15
A6 F17 D6 F2 D/C
S13
A5 E17 D5 D1 DMA
R12
A4 E16 D4 E2 SUP
Q12 V
CCPLL
B10 A3 D17 D3 C1 No Connect A2 D16 D2 D2 BOFF
B1 Location
D1 C2 A1, A3, A4, A5, B3,
B4, C4, C5, D3
D0 E3
12
80960CA-33, -25, -16
Table 7. 80960CA PGA Pinout — In Pin Order
Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
A1 NC C1 D3 G1 D9 M1 D16 R1 D24 A2 FAIL
C2 D1 G2 V
CC
M2 V
CC
R2 D27
A3 NC C3 ONCE
G3 V
SS
M3 V
SS
R3 D31
A4 NC C4 NC G15 V
SS
M15 V
SS
R4 BTERM
A5 NC C5 NC G16 A7 M16 V
CC
R5 HOLD
A6 DREQ1
C6 V
CC
G17 A8 M17 A14 R6 ADS
A7 DREQ3 C7 V
SS
R7 V
CC
A8 DACK1 C8 V
SS
H1 D11 N1 D17 R8 V
CC
A9 DACK2 C9 V
SS
H2 D10 N2 D18 R9 BE0
A10 DACK3 C10 V
SS
H3 V
SS
N3 V
CC
R10 V
CC
A11 EOP/TC0 C11 V
SS
H15 V
SS
N15 V
CC
R11 V
CC
A12 EOP/TC1 C12 V
SS
H16 V
CC
N16 A16 R12 DMA A13 EOP/TC2 C13 CLKIN H17 A9 N17 A15 R13 BREQ A14 EOP
/TC3 C14 CLKMODE R14 A29
A15 XINT1
C15 XINT4 J1 D12 P1 D19 R15 A26
A16 RESET
C16 XINT6 J2 V
CC
P2 D20 R16 A23 A17 XINT2
C17 XINT7 J3 V
SS
P3 D22 R17 A22
J15 V
SS
P15 A20 B1 BOFF
D1 D5 J16 V
CC
P16 A19 S1 D25 B2 STEST D2 D2 J17 A10 P17 A17 S2 D29 B3 NC D3 NC S3 READY B4 NC D15 NMI K1 D13 Q1 D21 S4 HOLDA B5 DREQ0
D16 A2 K2 V
CC
Q2 D23 S5 BE3 B6 DREQ2 D17 A3 K3 V
SS
Q3 D26 S6 BE2 B7 V
CC
K15 V
SS
Q4 D28 S7 BE1 B8 DACK0 E1 D7 K16 V
CC
Q5 D30 S8 BLAST B9 V
CC
E2 D4 K17 A11 Q6 V
CC
S9 DEN
B10 V
CCPLL
E3 D0 Q7 V
SS
S10 W/R
B11 V
CC
E15 V
CC
L1 D15 Q8 V
SS
S11 DT/R
B12 V
CC
E16 A4 L2 D14 Q9 V
SS
S12 WAIT
B13 PCLK2 E17 A5 L3 V
SS
Q10 V
SS
S13 D/C
B14 PCLK1 L15 V
SS
Q11 V
SS
S14 LOCK B15 XINT0 F1 D8 L16 A13 Q12 SUP S15 A31 B16 XINT3
F2 D6 L17 A12 Q13 A30 S16 A27
B17 XINT5
F3 V
CC
Q14 A28 S17 A25
F15 V
SS
Q15 A24
F16 V
CC
Q16 A21
F17 A6 Q17 A18
13
80960CA-33, -25, -16
Figure 2. 80960CA PGA Pinout — View from Top (Pins Facing Down)
D5D7D8D9D11D12D13D15D16D17D19D21D24D25
D2D4D6V
CC
D10V
CC
V
CC
D14V
CC
D18D20D23D27D29
NCD0V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
CC
D22D31READY D26
D28BTERM
HOLDA
D30HOLDBE3
V
CC
ADSBE2
V
SS
V
CC
BE1
V
SS
V
CC
BLAST
V
SS
BE0DEN
V
SS
V
CC
W/R
V
SS
V
CC
DT/R
A29LOCK
SUPWAIT DMA
A28
A30BREQD/C
D3
D1
ONCE
NC
NC
V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
CLKIN
CLK MODE
V
SS
BOFF
STEST
NC
NC
DREQ0
DREQ2
V
CC
DACK0
V
CC
V
CCPLL
V
CC
PCLK2
PCLK1
V
CC
NC
FAIL
NC
NC
NC
DREQ1
DREQ3
DACK1
DACK2
DACK3
EOP/TC0
EOP/TC2
EOP/TC3
EOP/TC1
V
SS
A2
V
CC
A22A25
A20 V
SS
A3A5
NMI
V
CC
V
SS
V
SS
V
SS
VSSV
SS
A24A31 A26
A4V
CC
A6A8A9A10A11A12A14A15A17A18
V
CC
V
CC
V
CC
A13V
CC
A16A19A21A23A27 A7 XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
ABCDEFGHJKLMNPQRS
F_CA002A
ABCDEFGHJKLMNPQRS
14
80960CA-33, -25, -16
Figure 3. 80960CA PGA Pinout — View from Bottom (Pins Facing Up)
D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25
D2 D4 D6 V
CC
D10 VCCVCCD14 VCCD18 D20 D23 D27 D29
NC D0 V
CCVSSVSSVSSVSSVSSVSSVCC
D22 D31 READYD26
D28 BTERM
HOLDA
D30 HOLD BE3
VCCADS BE2
VSSVCCBE1
VSSVCCBLAST
V
SS
BE0 DEN
VSSVCCW/R
VSSVCCDT/R
A29 LOCK
SUP WAITDMA
A28
A30 BREQ D/C
D3
D1
ONCE
NC
NC
V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
CLKIN
CLK MODE
V
SS
BOFF
STEST
NC
NC
DREQ0
DREQ2
V
CC
DACK0
V
CC
V
CCPLL
V
CC
PCLK2
PCLK1
V
CC
NC
FAIL
NC
NC
NC
DREQ1
DREQ3
DACK1
DACK2
DACK3
EOP/TC0
EOP/TC2
EOP/TC3
EOP/TC1
V
SS
A2
V
CC
A22 A25
A20V
SS
A3 A5
NMI
VCCV
SS
VSSV
SS
V
SS
V
SS
A24 A31A26
A4 V
CC
A6 A8 A9 A10 A11 A12 A14 A15 A17 A18
V
CCVCCVCC
A13 VCCA16 A19 A21 A23 A27A7XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
F_CA003A
A B C D E F G H J K L M N P Q R S
A B C D E F G H J K L M N P Q R S
Metal Lid
15
80960CA-33, -25, -16
3.3.2 80960CA PQFP Pinout
Tables 8 and 9 list the 80960CA pin names with package location. Figure 4 shows the 80960CA PQFP pinout as viewed from the top side.
See Section 4.0, ELECTRICAL SPECIFICATIONS for specifications and recommended connections.
Table 8. 80960CA PQFP Pinout — In Signal Order
Address Bus Data Bus Bus Control Processor Control I/O
Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin
A31 153 D31 186 BE3
176 RESET 91 DREQ3 60
A30 152 D30 187 BE2
175 FAIL 45 DREQ2 59
A29 151 D29 188 BE1
172 STEST 46 DREQ1 58
A28 145 D28 189 BE0
170 ONCE 43 DREQ0 57 A27 144 D27 191 CLKIN 87 A26 143 D26 192 W/R
164 CLKMODE 85 DACK3 65 A25 142 D25 194 PCLK2 74 DACK2
64
A24 141 D24 195 ADS
178 PCLK1 78 DACK1 63 A23 139 D23 3 V
SS
DACK0 62
A22 138 D22 4 READY
182 Location A21 137 D21 5 BTERM
184 2, 7, 16, 24, 30, 38,
39, 49, 56, 70, 75, 77, 81, 83, 88, 89, 92, 98, 105, 109, 110, 121, 125, 131, 135, 147, 150, 161, 165, 173, 174, 185, 196
EOP
/TC3 69
A20 136 D20 6 EOP
/TC2 68
A19 134 D19 8 WAIT
162 EOP/TC1 67 A18 133 D18 9 BLAST
169 EOP/TC0 66 A17 132 D17 10 A16 130 D16 11 DT/R
163 XINT7 107 A15 129 D15 13 DEN
167 V
CC
XINT6 106
A14 128 D14 14 Location XINT5
102
A13 124 D13 15 LOCK
156 1, 12, 20, 28, 32, 37,
44, 50, 61, 71, 79, 82, 96, 99, 103, 115, 127, 140, 148, 154, 168, 171, 180, 190
XINT4
101
A12 123 D12 17 XINT3
100
A11 122 D11 18 HOLD 181 XINT2
95
A10 120 D10 19 HOLDA 179 XINT1
94
A9 119 D9 21 BREQ 155 XINT0
93
A8 118 D8 22 V
CCPLL
72
A7 117 D7 23 D/C
159 No Connect NMI 108 A6 116 D6 25 DMA
160 Location A5 114 D5 26 SUP
158 29, 31, 41, 42, 47,
48, 51, 52, 53, 54, 55, 73, 76, 80, 84, 86, 90, 97, 104, 126, 146, 149, 157, 166, 177, 183, 193
A4 113 D4 27 A3 112 D3 33 BOFF
40 A2 111 D2 34
D1 35 D0 36
16
80960CA-33, -25, -16
Table 9. 80960CA PQFP Pinout — In Pin Order
Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
1 V
CC
34 D2 67 EOP/TC1 100 XINT3 133 A18 166 NC
2 V
SS
35 D1 68 EOP/TC2 101 XINT4 134 A19 167 DEN
3 D23 36 D0 69 EOP/TC3 102 XINT5 135 V
SS
168 V
CC
4 D22 37 V
CC
70 V
SS
103 V
CC
136 A20 169 BLAST
5 D21 38 V
SS
71 V
CC
104 NC 137 A21 170 BE0
6 D20 39 V
SS
72 V
CCPLL
105 V
SS
138 A22 171 V
CC
7 V
SS
40 BOFF 73 NC 106 XINT6 139 A23 172 BE1
8 D19 41 NC 74 PCLK2 107 XINT7 140 V
CC
173 V
SS
9 D18 42 NC 75 V
SS
108 NMI 141 A24 174 V
SS
10 D17 43 ONCE 76 NC 109 V
SS
142 A25 175 BE2
11 D16 44 V
CC
77 V
SS
110 V
SS
143 A26 176 BE3
12 V
CC
45 FAIL 78 PCLK1 111 A2 144 A27 177 NC
13 D15 46 STEST 79 V
CC
112 A3 145 A28 178 ADS 14 D14 47 NC 80 NC 113 A4 146 NC 179 HOLDA 15 D13 48 NC 81 V
SS
114 A5 147 V
SS
180 V
CC
16 V
SS
49 V
SS
82 V
CC
115 V
CC
148 V
CC
181 HOLD
17 D12 50 V
CC
83 V
SS
116 A6 149 NC 182 READY 18 D11 51 NC 84 NC 117 A7 150 V
SS
183 NC 19 D10 52 NC 85 CLKMODE 118 A8 151 A29 184 BTERM 20 V
CC
53 NC 86 NC 119 A9 152 A30 185 V
SS
21 D9 54 NC 87 CLKIN 120 A10 153 A31 186 D31 22 D8 55 NC 88 V
SS
121 V
SS
154 V
CC
187 D30 23 D7 56 V
SS
89 V
SS
122 A11 155 BREQ 188 D29
24 V
SS
57 DREQ0 90 NC 123 A12 156 LOCK 189 D28
25 D6 58 DREQ1
91 RESET 124 A13 157 NC 190 V
CC
26 D5 59 DREQ2 92 V
SS
125 V
SS
158 SUP 191 D27
27 D4 60 DREQ3
93 XINT0 126 NC 159 D/C 192 D26
28 V
CC
61 V
CC
94 XINT1 127 V
CC
160 DMA 193 NC
29 NC 62 DACK0
95 XINT2 128 A14 161 V
SS
194 D25 30 V
SS
63 DACK1 96 V
CC
129 A15 162 WAIT 195 D24
31 NC 64 DACK2
97 NC 130 A16 163 DT/R 196 V
SS
32 V
CC
65 DACK3 98 V
SS
131 V
SS
164 W/R
33 D3 66 EOP/TC0 99 V
CC
132 A17 165 V
SS
17
80960CA-33, -25, -16
Figure 4. 80960CA PQFP Pinout (View from Top Side)
5098
99
147
148
196
Pin 1
49
F_CA004A
Loading...
+ 47 hidden pages