Datasheet FC80960HT75SL2GT, FC80960HT60SL2G2, FC80960HD80SL2GZ, FC80960HD66SL2GN, FC80960HD50SL2GM Datasheet (Intel Corporation)

...
80960HA/HD/HT32-BitHigh-P erformance Superscalar Processor
Data Sheet
Advance Information
Product Features
32-Bit Parallel Architecture
—Load/Store Architecture —Sixteen 32-Bit Global Registers —Sixteen 32-Bit Local Registers —1.28 Gbyte Internal Bandwidth
(80 MHz)
—On-Chip Register Cache
Processor Core Clock
—80960HA is 1xBus Clock —80960HD is 2x Bus Clock —80960HT is 3x Bus Clock
Binary Compatible with Other 80960
Processors
Issue Up To 150 Million Instructions per
Second
High-Performance On-Chip Storage
—16 Kbyte Four-WaySet-Associative
Instruction Cache
—8 Kbyte Four-W ay Set-Associative Data
Cache —2 Kbyte General Purpose RAM —Separate 128-Bit Internal Paths For
Instructions/Data
3.3 V Supply Voltage
—5 V Tolerant Inputs —TTL Compatible Outputs
Guarded Memory Unit
—Provides Memory Protection —User/Supervisor Read/Write/Execute
32-Bit Demultiplexed Burst Bus
—Per-Byte Parity Generation/Checking —Address Pipelining Option —Fully Programmable Wait State
Generator —Supports 8-, 16- or 32-Bit Bus Widths —160 Mbyte/s External Bandwidth
(40 MHz)
High-Speed Interrupt Controller
—Up to 240 External Interrupts —31 Fully Programmable Priorities —Separate, Non-maskable Interrupt Pin
Dual On-Chip 32-Bit Timers
—Auto Reload Capability and One-Shot —CLKIN Prescaling, ÷1, 2, 4 or 8 —JTAG Support - IEEE 1149.1 Compliant
Order Number: 272495-007
July, 1998
Notice: This document contains information on products in the sampling and initial production phases of development. The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design.
80960HA/HD/HT
Advance Information Datasheet
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The
80960HA/HD/HT
may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com. Copyright © Intel Corporation, 1998 *Third-party brands and names are the property of their respective owners.
Advance Information Datasheet iii
80960HA/HD/HT
Contents
1.0 About This Document ..............................................................................................1
2.0 Intel’s 80960Hx Processor......................................................................................1
2.1 The i960® Processor Family.................................................................................2
2.2 Key 80960Hx Features..........................................................................................2
2.2.1 Execution Architecture .............................................................................2
2.2.2 Pipelined, Burst Bus.................................................................................2
2.2.3 On-Chip Caches and Data RAM ..............................................................3
2.2.4 Priority Interrupt Controller.......................................................................3
2.2.5 Guarded Memory Unit..............................................................................3
2.2.6 Dual Programmable Timers .....................................................................4
2.2.7 Processor Self Test..................................................................................4
2.3 Instruction Set Summary.......................................................................................5
3.0 Package Information.................................................................................................6
3.1 Pin Descriptions ....................................................................................................7
3.2 80960Hx Mechanical Data..................................................................................12
3.2.1 80960Hx PGA Pinout.............................................................................12
3.2.2 80960Hx PQ4 Pinout..............................................................................18
3.3 Package Thermal Specifications.........................................................................23
3.4 Heat Sink Adhesives...........................................................................................26
3.5 PowerQuad4 Plastic Package.............................................................................26
3.6 Stepping Register Information.............................................................................26
3.7 Sources for Accessories......................................................................................28
4.0 Electrical Specifications........................................................................................29
4.1 Absolute Maximum Ratings.................................................................................29
4.2 Operating Conditions...........................................................................................29
4.3 Recommended Connections...............................................................................30
4.4 VCC5 Pin Requirements (V
DIFF
).........................................................................30
4.5 VCCPLL Pin Requirements.................................................................................31
4.6 DC Specifications................................................................................................32
4.7 AC Specifications ................................................................................................34
4.7.1 AC Test Conditions ................................................................................37
4.8 AC Timing Waveforms ........................................................................................38
5.0 Bus Waveforms.........................................................................................................46
5.1 80960Hx Boundary Scan Chain..........................................................................76
5.2 Boundary Scan Description Language Example.................................................80
80960HA/HD/HT
iv Advance Information Datasheet
Figures
1 80960Hx Block Diagram .......................................................................................1
2 80960Hx 168-Pin PGA Pinout — View from Top (Pins Facing Down) ...............12
3 80960Hx 168-Pin PGA Pinout — View from Bottom (Pins Facing Up)...............13
4 80960Hx 208-Pin PQ4 Pinout.............................................................................18
5 Measuring 80960Hx PGA Case Temperature ....................................................23
6 80960Hx Device Identification Register ..............................................................26
7 VCC5 Current-Limiting Resistor..........................................................................30
8 AC Test Load ......................................................................................................37
9 CLKIN Waveform ................................................................................................38
10 Output Delay Waveform......................................................................................38
11 Output Delay Waveform......................................................................................38
12 Output Float Waveform.......................................................................................39
13 Input Setup and Hold Waveform.........................................................................39
14 NMI
,XINT7:0Input Setup and Hold Waveform..................................................39
15 Hold Acknowledge Timings.................................................................................40
16 Bus Backoff (BOFF
) Timings ..............................................................................40
17 TCK Waveform....................................................................................................41
18 Input Setup and Hold Waveforms for T
BSIS1
and T
BSIH1
....................................41
19 Output Delay and Output Float for T
BSOV1
and T
BSOF1
......................................42
20 Output Delay and Output Float Waveform for T
BSOV2
and T
BSOF2
....................42
21 Input Setup and Hold Waveform for T
BSIS2
and T
BSIH2
......................................42
22 Rise and Fall Time Derating at 85°C and Minimum V
CC
....................................43
23 I
CC
Active (Power Supply) vs. Frequency ...........................................................43
24 I
CC
Active (Thermal) vs. Frequency....................................................................44
25 Output Delay or Hold vs. Load Capacitance .......................................................44
26 Output Delay vs. Temperature............................................................................45
27 Output Hold Times vs. Temperature...................................................................45
28 Output Delay vs. V
CC
..........................................................................................45
29 Cold Reset Waveform.........................................................................................46
30 Warm Reset Waveform.......................................................................................47
31 Entering ONCE
Mode .........................................................................................48
32 Non-Burst, Non-Pipelined Requests without Wait States ...................................49
33 Non-Burst, Non-Pipelined Read Request with Wait States.................................50
34 Non-Burst, Non-Pipelined Write Request with Wait States.................................51
35 Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus.................52
36 Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus......................53
37 Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus .................54
38 Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus......................55
39 Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus......................56
40 Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus........................57
41 Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus.................58
42 Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus......................59
43 Burst, Pipelined Read Request without Wait States, 32-Bit Bus.........................60
44 Burst, Pipelined Read Request with Wait States, 32-Bit Bus..............................61
45 Burst, Pipelined Read Request with Wait States, 8-Bit Bus................................62
46 Burst, Pipelined Read Request with Wait States, 16-Bit Bus..............................63
47 Using External READY
........................................................................................64
48 Terminating a Burst with BTERM
........................................................................65
49 BREQ and BSTALL Operation............................................................................66
Advance Information Datasheet v
80960HA/HD/HT
50 BOFF Functional Timing. BOFF occurs during a burst or
non-burst data cycle........................................................................................... 67
51 HOLD Functional Timing.................................................................................... 68
52 LOCK
Delays HOLDA Timing ............................................................................ 69
53 FAIL
Functional Timing....................................................................................... 69
54 A Summary of Aligned and Unaligned Transfers for 32-Bit Regions ................. 70
56 A Summary of Aligned and Unaligned Transfers for 16-Bit Bus ........................ 72
57 A Summary of Aligned and Unaligned Transfers for 8-Bit Bus .......................... 73
58 Idle Bus Operation.............................................................................................. 74
59 Bus States.......................................................................................................... 75
Tables
1 80960Hx Product Description................................................................................1
2 Fail Codes For BIST (bit 7 = 1) .............................................................................4
3 Remaining Fail Codes (bit 7 = 0)...........................................................................4
4 80960Hx Instruction Set........................................................................................5
5 80960HA/HD/HT Package Types and Speeds .....................................................6
6 Pin Description Nomenclature...............................................................................7
7 80960Hx Processor Family Pin Descriptions........................................................8
8 80960Hx 168-Pin PGA Pinout — Signal Name Order ........................................14
9 80960Hx 168-Pin PGA Pinout — Pin Number Order..........................................16
10 80960Hx PQ4 Pinout — Signal Name Order......................................................19
11 80960Hx PQ4 Pinout — Pin Number Order........................................................21
12 Maximum T
A
at Various Airflows in °C (PGA Package Only)..............................24
13 80960Hx 168-Pin PGA Package Thermal Characteristics..................................24
14 Maximum T
A
at Various Airflows in °C (PQ4 Package Only) ..............................25
15 80960Hx 208-Pin PQ4 Package Thermal Characteristics ..................................25
16 Fields of 80960Hx Device ID...............................................................................27
17 80960Hx Device ID Model Types........................................................................27
18 Device ID Version Numbers for Different Steppings...........................................27
19 Operating Conditions...........................................................................................29
20 V
DIFF
Specification for Dual Power Supply Requirements (3.3 V, 5 V)...............30
21 80960Hx DC Characteristics...............................................................................32
22 80960Hx AC Characteristics...............................................................................34
23 AC Characteristics Notes....................................................................................36
24 80960Hx Boundary Scan Test Signal Timings....................................................36
25 80960Hx Boundary Scan Chain..........................................................................76
26 Data Sheet Version -006 to -007 Revision History..............................................96
80960HA/HD/HT
Advance Information Datasheet 1
1.0 About This Document
This document describes the parametric performance of Intel’s 80960Hx embedded superscalar microprocessors. Detailed descriptions for functional topics — other than parametric performance — are published in the i960
®
Hx Microprocessor User’s Guide (272484).
In this document, “80960Hx” and “i960 Hx processor” refer to the products described in Table 1. Throughout this document, information that is specific to each is clearly indicated.
2.0 Intel’s 80960Hx Processor
Intel’s80960Hx processor provides new performance levels while maintaining backward compatibility (pin
1
and software) with the i960 CA/CF processor. This newest member of the family of i960 32-bit, RISC-style, embedded processors allows customers to create scalable designs that meet multiple price and performance points. This is accomplished by providing processors that can run at the bus speed or faster using Intel’s clock multiplying technology (Table 1).The 80960Hx core is capable of issuing 150 million instructions per second, using a sophisticated instruction scheduler that allows the processor to sustain a throughput of two instructions every core clock, with a peak performance of three instructions per clock. The 80960Hx-series comprises three processors, which differ in the ratio of core clock speed to external bus speed.
1. The 80960Hx is not “drop-in” compatible in an 80960Cx-based system. Customers can design systems that accept either 80960Hx or Cx processors.
Figure 1. 80960Hx Block Diagram
Execution Unit
Programmable
Bus Controller
Bus Request Queues
Six-Port Register File
32-bit Base Bus
Instruction Cache
128-Bit Cache Bus
Instruction Prefetch Queue
Interrupt Controller
Control
Address Data
Memory-Side Machine Bus
Register-Side
Machine Bus
Memory Region Configuration
Multiply/Divide Unit
Interrupt
Port
AddressGeneration Unit
Data Cache
16 Kbyte,Four-WaySet-Associative
8 Kbyte,Four-WaySet-Associative
Guarded Memory Unit
Timers
JTAG Port
Parallel Instruction Scheduler
Data RAM - 2 Kbyte
RegisterCache-5to15sets
64-bit SRC1 Bus 64-bit SRC2 Bus
64-bit DST Bus
128-bit Load Bus
128-bit Store Bus
Table 1. 80960Hx Product Description
Product Core Voltage Operating Frequency (bus/core)
80960HA 1x 3.3 V
*
25/25, 33/33, 40/40
80960HD 2x 3.3 V
*
16/32, 25/50, 33/66, 40/80
80960HT 3x 3.3 V
*
20/60, 25/75
*Processor inputs are 5 V tolerant.
80960HA/HD/HT
2 Advance Information Datasheet
In addition to expanded clock frequency options, the 80960Hx provides essential enhancements for an emerging class of high-performance embedded applications. Features include a larger instruction cache, data cache, and data RAM than any other 80960 processor to date. It also boasts a 32-bit demultiplexed and p ipelined burst bus, fast interrupt mechanism, guarded memory unit, wait state generator,dual programmable timers, ONCE and IEEE 1149.1-compliant boundary scan test and debug support, and new instructions.
2.1 The i960®Processor Family
The i960 processor family is a 32-bit RISC architecture created by Intel to serve the needs of embedded applications. The embedded m arket includes applications as diverse as industrial automation, avionics, image processing, graphics and communications.
Because all members of the i960 processor family share a common core architecture, i960 applications are code-compatible. Each new processor in the family adds its own special set of functions to the core to satisfy the needs of a specific application or range of applications in the embedded market.
2.2 Key 80960Hx Features
2.2.1 Execution Architecture
Independent instruction paths inside the processor allow the execution of multiple, out-of-sequence instructions per clock. Register and resource scoreboarding interlocks maintain the logical integrity of sequential instructions that are being executed in parallel. To sustain execution of multiple instructions in each clock cycle, the processor decodes multiple instructions in parallel and simultaneously issues these instructions to parallel processing units. The various processing units are then able to independently access instruction operands in parallel from a common register set.
Local Register Cache integrated on-chip provides automatic register management on call/return instructions. Upon a call instruction, the processor allocates a set of local registers for the called procedure, then stores the registers for the previous procedure in the on-chip register cache. As additional procedures are called, the cache stores the associated registers such that the most recently called procedure is the first available by the nextreturn (ret) instruction. The processor can store up to fifteen register sets, after which the oldest sets are stored (spilled) into external memory.
The 80960Hx supports the 80960 architecturally-defined branch prediction mechanism. This allows many branches to execute with no pipeline break. With the 80960Hx’s efficient pipeline, a branch can take as few as zero clocks to execute. The maximum penalty for an incorrect prediction is two core clocks.
2.2.2 Pipelined, Burst Bus
A 32-bit high performance bus controller interfaces the 80960Hx core to the external memory and peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per second (at a 40 MHz external bus clock frequency). A key advantage of this design is its versatility. The user can independently program the p hysical and logical attributes of system memory. Physical attributes include wait state profile, bus width, and parity. Logical attributes include cacheability and Big or Little Endian byte order. Internally programmable wait states and 16 separately configurable physical memory regions allow the processor to interface with a variety of memory
80960HA/HD/HT
Advance Information Datasheet 3
subsystems with minimum system complexity.To reduce the effect of wait states, t he bus design is decoupled from the core. This lets the processor execute instructions while the bus performs memory accesses independently.
The Bus Controller’s key features include:
Demultiplexed, Burs t Bus to support most efficient DRAM access modes
Address Pipelining to reduce memory cost while maintaining performance
32-, 16- and 8-bit modes to facilitate I/O interfacing
Full internal wait state generation to reduce system cost
Little and Big Endian support
Unaligned Access support implemented in hardware
Three-deep request queue to decouple the bus from the core
Independent physical and logical address space characteristics
2.2.3 On-Chip Caches and Data RAM
As shown in Figure 1, the 80960Hx provides generous on-chip cache and storage features to decouple CPU execution from the external bus. The processor includes a 16 Kbyte instruction cache, an 8 Kbyte data cache and 2 Kbytes of Data RAM. The caches are organized as 4-way set associative. Stores that hit the data cache are written through to memory. The data cache performs write allocation on cache misses. A fifteen-set stack frame cache allows the processor to rapidly allocate and deallocate local registers. All of the on-chip RAM sustains a 4-word (128-bit) access every clock cycle.
2.2.4 Priority Interrupt Controller
The interrupt unit provides the mechanism for the low latency and high throughput interrupt service essential for embedded applications. A priority interrupt controller provides full programmability of 240 interrupt sources with a typical interrupt task switch (latency) time of 17 core clocks. The controller supports 31 priority levels. Interru pts are prioritized and signaled within 10 core clocks of the request. If the interrupt has a higher priority than the processor priority, the context switch to the interrupt routine would typically complete in another 7 bus clocks.
External agents post interr upts via the 8-bit external interrupt port. The Interrupt unit also handles the two internal sources from the Timers. Interrupts can be level- or edge-triggered.
2.2.5 Guarded Memory Unit
The Guarded Memory Unit (GMU) provides memory protection without the address translation found in Memory Management Units. The GMU contains two memory protection schemes: one prevents illegal memory accesses, the other detects memory access violations. Both signal a fault to the processor. The programmable protection modes are: user read, write or execute; and supervisor read, write or execute.
80960HA/HD/HT
4 Advance Information Datasheet
2.2.6 Dual Programmable Timers
The processor provides two independent 32-bit timers, with four programmable clock rates. The user configures the timers via the Timer Unit registers. These registers are memory-mapped within the 80960Hx, addressable on 32-bit boundaries. The timers have a single-shot mode and auto-reload capabilities for continuous operation. Each timer has an independent interrupt request to the processor’s interrupt controller.
2.2.7 Processor Self Test
When a system error is detected, the FAIL pin is asserted, a fail code message is driven onto the address bus, and the processor stops execution at the point of failure. The only way to resume normal operation is to perform a RESET operation. Because System Error generation can occur sometime after the bus confidence test and even after initialization during normal processor operation, the FAIL
pin is HIGH (logic “1”) before the detection of a System Error.
The processor uses only one read bus-transaction to signal the fail code message; the address of the bus transaction is the fail code itself. The fail code is of the form: 0xfeffffnn; bits 6 to 0 contain a mask recording the possible failures. Bit 7, when set to 1, indicates that the mask contains failures from the internal Built-In Self-Test (BIST); when 0, the mask indicates other failures.
Ignore reserved bits 0 and 1. Also ignore bits 5 and 6 when bit 7 is clear (=0). The mask is shown in Table 2 and Table 3.
Table 2. Fail Codes For BIST (bit 7 = 1)
Bit When Set:
6 On-chip Data-RAM failure detected by BIST. 5 Internal Microcode ROM failure detected by BIST. 4 Instruction cache failure detected by BIST. 3 Data cache failure detected by BIST. 2 Local-register cache or processor core failure detected by BIST. 1 Reserved. Always zero. 0 Reserved. Always zero.
Table 3. Remaining Fail Codes (bit 7 = 0)
Bit When Set:
6 Reserved. Always one. 5 Reserved. Always one. 4 A data structure within the IMI is not aligned to a word boundary. 3 A System Error dur ing normal operation has occurred. 2 The Bus Confidence test has failed. 1 Reserved. Always zero. 0 Reserved. Always zero.
80960HA/HD/HT
Advance Information Datasheet 5
2.3 Instruction Set Summary
Table 4 summarizes the 80960Hx instruction set by logical groupings.
Table 4. 80960Hx Instruction Set
Data Movement Arithmetic Logical Bit / Bit Field / Byte
Load Store Move Load Address Conditional Select
(2)
Add Subtract Multiply Divide Remainder Modulo Shift Extended Shift Extended Multiply Extended Divide Add with Carry Subtract with Carry Rotate Conditional Add
(2)
Conditional Subtract
(2)
And Not And And Not Or Exclusive Or Not Or Or Not Nor Exclusive Nor Not Nand
Set Bit Clear Bit Not Bit Alter Bit Scan For Bit Span Over Bit Extract Modify Scan Byte for Equal Byte Swap
(2)
Comparison Branch Call/Return Fault
Compare Conditional Compare Compare and Increment Compare and Decrement Compare Byte
(2)
Compare Short
(2)
Test Condition C ode Check Bit
Unconditional Branch Conditional Branch Compare and Branch
Call Call Extended Call System Return Branch and Link
Conditional Fault Synchronize Faults
Debug Processor Mgmt Atomic Cache Control
Modify TraceControls Mark Force Mark
Flush Local Registers Modify Arithmet ic
Controls Modify Process Controls Interrupt Enable/
Disable
(1,2)
System Control
(1)
Atomic Add Atomic Modify
Instruction Cache Control
(1,2)
Data Cache Control
(1,2)
NOTES:
1. 80960Hx extensions to the 80960 core instruction set .
2. 80960Hx extensions to the 80960Cx instruction set.
80960HA/HD/HT
6 Advance Information Datasheet
3.0 Package Information
This section describes the pins, pinouts and thermal characteristics for the 80960Hx i n the 168-pin ceramic Pin Grid Array (PGA) package, 208-pin PowerQuad2* (PQ4). For complete package specifications and information, see the Intel Packaging Handbook (Order# 240800).
The 80960HA/HD/HT is offered with eigth speeds and two package types (Table 5). Both the 168-pin ceramic Pin Grid Array (PGA) and the 208-pin PowerQuad2* (PQ4) devices are specified for operation at V
CC
= 3.3 V ± 0.15 V over a case temperature range of 0° to 85°C.
Table 5. 80960HA/HD/HT Package Types and Speeds
Package/Name Devi ce
Core Speed
(MHz)
Bus Speed
(MHz)
Order #
168L PGA
80960HA
25 A80960HA25 S L2GX 33 A80960HA33 S L2GY 40 A80960HA40 S L2GZ
80960HD
32 16 A80960HD32 S L2GG 50 25 A80960HD50 S L2GH 66 33 A80960HD66 S L2GJ 80 40 A80960HD80 S L2GK
80960HT
60 20 A80960HT60 75 25 A80960HT75 S L2GP
208L PQFP
(alsoknownasPQ4)
80960HA
25 FC80960HA25 S L2GU 33 FC80960HA33 S L2GV 40 FC80960HA40 S L2GW
80960HD
32 16 FC80960HD32 S L2GL 50 25 FC80960HD50 S L2GM 66 33 FC80960HD66 S L2GN 80 40 FC80960HD80 S L2LZ
80960HT
60 20 FC80960HT60 S L2G 2 75 25 FC80960HT75 S L2GT
80960HA/HD/HT
Advance Information Datasheet 7
3.1 Pin Descriptions
This section defines the 80960Hx pins. Table 6 presents the legend for interpreting the pin descriptions in Table 7. All pins float while the processor is in the ONCE mode, except TDO, which can be driven active according to normal JTAG specifications.
Table 6. Pin Description Nomenclature
Symbol Description
I Input only pin.
O Output only pin.
I/O Pin can be input or output.
- Pin must be connected as indicated for proper device functionality.
S(E)
Synchronous edge sensitive input. This in put must meet the setup and hold times relative to CLKIN to ensure p roper operation of the process o r.
S(L)
Synchronous level sensitive input. This input must meet the setup and hold times relative to CLKIN to ensure p roper operation of the process o r.
A(E) Asynchronous edge-sensitive input. A(L) Asynchronous level-sensitive input.
H(...)
While the processor bus is in the HOLD state (HOLDA asserted), the pin:
H(1) is driven to V
CC
H(0) is driven to V
SS
H(Z) floats H(Q) continues to be a valid output
B(...)
While the processor is in the bus backoff state (BOFF
asserted), the pin:
B(1) is driven to V
CC
B(0) is driven to V
SS
B(Z) floats B(Q) continues to be a valid output
R(...)
While the processor’s RESET
pin is asserted, t he pin:
R(1) is driven to V
CC
R(0) is driven to V
SS
R(Z) floats R(Q) continues to be a valid output
80960HA/HD/HT
8 Advance Information Datasheet
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 1 of 4)
Name Type Description
A31:2
O
H(Z) B(Z) R(Z)
ADDRESS BUS carries the upper 30 bits of the physical address. A31 is the most significant address bit and A2 is the least significant. During a bus access, A31:2 identify all external addresses to word (4-byte) boundaries. The byte enable signals indicate the selected byte in each word. During burst accesses, A3 and A2 increment to indicate successive addresses.
D31:0
I/O
S(L) H(Z) B(Z) R(Z)
DATA BUS carries 32, 16, or 8-bit data quantities depending on bus wid th configuration. The least significant bit of the data is carried on D0 and the most significant on D31. The lower 8 data lines (D7:0) are used when the bus is configured for 8-bit data. When configured for 16-bit data, D15:0 are used.
DP3:0
I/O
S(L) H(Z) B(Z) R(Z)
DATA PARITY carries parity information for the data bus. Each parity bit is assigned a group of 8 data bus pins as follows:
DP3 generates/checks parity for D31:24 DP2 generates/checks parity for D23:16 DP1 generates/checks parity for D15:8 DP0 generates/checks parity for D7:0
Parity information is generated for a processor write cycle and is checked for a processor read cycle. Parity checking and polarity are programmable. Parity generation/checking is only performed for the size of the data accessed.
PCHK
O
H(Q) B(Q)
R(1)
PARITY CHECK indicat es the result of a parity check operation. An asserted PCHK
indicates that the previous bus read access resulted in a parity check error.
BE3:0
O
H(Z) B(Z) R(1)
BYTE ENABLES select which of the four bytes addressed by A31:2 are active during a bus access. Byte enable encoding is dependent on the bus width of the memory region accessed:
32-bit bus:
BE3 enables D31:24 BE2
enables D23:16
BE1
enables D15:8
BE0
enables D7:0
16-bit bus:
BE3 becomes Byte High Enable (enables D15:8) BE2
is not used (state is undefined)
BE1
becomes Address Bit 1 (A1)
BE0
becomes Byte Low Enable (enables D7:0)
8-bit bus:
BE3 is not used (state is undefined) BE2
is not used (state is undefined)
BE1
Address Bit 1 (A 1)
BE0
Address Bit 0 (A 0)
W/R
O
H(Z) B(Z) R(0)
WRITE/READ is low for read accesses and high for write accesses. W/R becomes valid during the address phase of a bus cycle and remains validuntil the end of the cycle for non-pipelined accesses. For pipelined accesses, W/R changes state when the next address is presented.
0= Read 1= Write
D/C
O
H(Z) B(Z) R(0)
DATA/CODE indicates that a bus access is a data access or an instruction access. D/C
has the same timing as W/R.
0 = Code 1=Data
80960HA/HD/HT
Advance Information Datasheet 9
SUP
O
H(Z) B(Z) R(1)
SUPERVISORACCESS indicates whether the c urrent bus access originates from a request issued while in supervisor mode or user mode. S UP
canbeusedbythe memory subsystem to isolate supervisor code and data structures from non-supervisor access.
0 = Supervisor Mode 1 = User Mode
ADS
O
H(Z) B(Z) R(1)
ADDRESS STROBE indicates a valid address and the start of a new bus access. ADS
is asserted for the first clock of a bus access.
READY
I
S(L)
READY
, when enabled for a memory region, is asserted by the memory
subsystem to indicate the completion of a data transfer. READY
is used to indicate that read data on the bus is valid, or that a wr ite transfer has completed. READY
works in conjunction with the internal wait state generator to
accommodate various memory speeds. READY
is sampled after any programmed
wait states: During each data c ycle of a burst access During the data cycle of a non-burst access
BTERM
I
S(L)
BURST TERMINATE, when enabled for a memory r egion, is asserted by the memory subsystem to terminate a burst access in progress. When BTERM
is asserted, the current burst access is terminated and another address cycle occurs.
WAIT
O
H(Z) B(Z) R(1)
WAIT
indicates the status of the inter nal wait-state generator. WAIT is asserted
when the internal wait state generator generates N
WAD,NRAD,NWDD
and N
RDD
wait states. WAIT canbeusedtoderiveawritedatastrobe.
BLAST
O
H(Z) B(Z) R(1)
BURST LAST indicates the last transfer i n a bus access. BLAST
is asserted in t he last data transfer of burst and non-burst accesses after the internal wait-state generator reaches zero. B LAST
remains active as long as wait states are inserted
via the READY
pin. BLAST becomes inactive after the final data transfer in a bus
cycle.
DT/R
O
H(Z) B(Z) R(0)
DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R
is
used with DEN
to provide control for data transceivers connected to the data bus.
DT/R
is driven low to indicate the processor expects data (a read cycle). DT/R is
driven high when the processor is “transmitting” data (a s tore cycle). DT/R
only
changes state when DEN
is high.
0 = Data Receive 1 = Data Transmit
DEN
O
H(Z) B(Z) R(1)
DATA ENABLE indicates data transfer cycles during a bus access. DEN
is asserted at the start of the first data cycle in a bus access and de-asserted at the end of the last data cycle. DEN
remains asserted for an entire bus request, even when that request spans several bus accesses. For example, a l dq instruction starting at an unaligned quad word boundary is one bus request spanning at least two bus accesses. DEN
remains asserted throughout all the accesses (including
ADS
states) and de-asserts when the Iqd instruction request is satisfied. DE N is
used with DT/R
to provide control for data transceivers co nnected to the data bus.
DEN
remains asserted for sequential reads from pipelined memory regions.
LOCK
O
H(Z) B(Z) R(1)
BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK
may be used by the memory subsystem to prevent external agents from accessing memory that is currently involved in an atomic operation (e.g., a semaphore). LOCK
is asserted in the first clock of an atomic operation and
de-asserted when BLAST
is deasserted in the last bus cycle.
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 2 of 4)
Name Type Description
80960HA/HD/HT
10 Advance Information Datasheet
HOLD
I
S(L)
HOLD REQUEST signals that an external agent requests access to the processor’s address, data, and control buses. When HOLD is asserted, the processor:
Completes the current bus request. Asserts HOLDA and flo ats the addres s, data, and control buses. When HOLD is deasserted, the HOLDA pin i s deasserted and the processor
reassumes control of the address, data, and control pins.
HOLDA
O
H(1) B(0)
R(Q)
HOLD ACKNOWLEDGE indicates to an external master that the processor has relinquished control of the bus. The processor grants HOLD requests and enters the HOLDA state while the RESET
pin is asserted.
HOLDA is never granted while LOCK
is asserted.
BOFF
I
S(L)
BUS BACKOFF forces the processor to immediately relinquish control of the bus on the next clock cycle. When READY
/BTERM is enabled and:
When BOFF
is asserted, the address, data, and control buses are floated on the
next clock cycle and the current ac cess is aborted. When BOFF
is deasserted, the processor resumes by regenerating the aborted
bus access. See Figure 16 on page 40 for BOFF
timing requirements.
BREQ
O
H(Q) B(Q)
R(0)
BUS REQUEST indicates that a bus request is pending in the bus controller. BREQ does not indicate whether or not the processor is stalled. See BSTALL for processor stall status. BREQ can be used with BSTALL to indicate to an external bus arbiter the processor’s bus ownership requirements.
BSTALL
O
H(Q) B(Q)
R(0)
BUS STALL indicates that the processor has stalled pending the result of a request in the bus controller. When BSTALL is asserted, the processor must regain bus ow nership to continue processing (i.e., it can no longer execute strictly out of on-chip cache memory).
CT3:0
O
H(Z) B(Z) R(Z)
CYCLE TYPE indicates the type of bus cycle currently being started or processor state. CT3:0 encoding follows:
Cycle Type ADSCT3:0
Program-initiated access using 8-bit bus 00000 Program-initiated access using 16-bit bus 00001 Program-initiated access using 32-bit bus 00010 Event-initiated access using 8-bit bus 00100 Event-initiated access using 16-bit bus 00101 Event-initiated access using 32-bit bus 00110 Reserved 00X11 Reserved for future products 01XXX Reserved 1XXXX
XINT7:0
I
A(E) A(L)
EXTERNAL INTERRUPT pins are us e d to r equest interrupt service. These pins can be configured in three modes:
Dedicated Mode:
Each pin is assigned a dedicated interrupt level. Dedicated inputs can be programmed to be level (low or high) or edge (rising or falling) sensitive.
Expanded Mode:
All eight pins act as a vectored interrupt source. The interrupt pins are level sensitive in this mode.
Mixed Mode:
The XINT7:5pins act as dedicated sources and the XINT4:0 pins act as the five most significant bits of a vectored source. The least significant bits of the vectored source are set to “010” internally.
NMI
I
A(E)
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI
is the highest priority interrupt source. NMI is falling edge triggered.
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 3 of 4)
Name Type Description
80960HA/HD/HT
Advance Information Datasheet 11
CLKIN I
CLOCK INPUT provides the time base for the 80960Hx. A ll internal circuitry is
synchronized to CLKIN. All input and output timings are specified relative to CLKIN.
For the 80960HD, the 2x internal clock is derived by multiplying the CLKIN frequency by 2. For the 80960HT, the 3x inter nal clock is derived by multiplying the CLKIN frequency by 3.
RESET
I
A(L)
RESET
forces the device into reset. RESET causes all external and internal
signals to return to their reset state ( if defined). The rising edge of RESET
starts
the processor boot sequenc e.
STEST
I
S(L)
SELF TEST, when asserted during the rising edge of RESET
, causes the
processor to execute its built in self-test.
FAIL
O
H(Q) B(Q)
R(0)
FAIL
indicates a failure of the processor’s built-in self-test performed during
initialization. FAIL
is assert ed immediately out of reset and togg les during self-test
to indicate the status of individual tests. If self-test passes, FAIL
is de-asserted and the processor branches to the user’s initialization code. When self-test fails, the FAIL
pin asserts and the processor ceases execution.
ONCE
I
ON-CIRCUIT EMULATIONcontrol: the processor samples this pin during reset. If
it is asserted low at the end of reset, the processor enters ONCE mode. In ONCE mode, the processor stops all clocks and floats all output pins except the TDO pin. ONCE
uses an internal pull-up resistor; see RPUdefinition in Table 21 “80960Hx
DC Characteri stics” on page 32. Pull this pin high when not in use.
TCK I
TEST CLOCK provides the clocking function for IEEE 1149.1 Boundar y Scan
testing.
TDI I
TEST DATA INPUT is the serial input pin for I EE E 1149.1 Boundar y Scan testing.
TDI uses an internal pull-up resistor; see R
PU
definition in Table 21 “80960Hx DC
Characteristics” on page 32.
TDO O
TEST DATA OUTPUT is the serial output pin for IEEE 1149.1 Boundary Scan
testing. ONCE does not disable this pin.
TRST
I
TEST RESET asynchronously resets the TestAccess Port (TAP)controller.TRS T
must be held low at least 10,000 clock cycles after power-up. One method is to provide TRST
with a separate power-on-reset circuit. TRST includes an internal
pull-up resistor ; see R
PU
definition in Table21 “80960Hx DC Characteristics” on
page 32. Pull this pin low when not in use.
TMS I
TEST MODE SELECT is sampled at the rising edge of TCK. TCK controls the
sequence of TAP controller state changes for IEEE 1149.1 Boundary Scan testing. TMS uses an internal pull-up resistor; see R
PU
definition in Ta ble 21
“80960Hx DC Characteristics” on page 32.
VCC5 I
5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O
buffers. Connect t his signal to +5 V for use with inputs which exceed 3.3 V. When all inputs are from 3.3 V components, connect this signal to 3.3 V.
VCCPLL I PLL VOLTAGE is the +3.3 VDC analog input for the PLL.
VOLDET O
VOLTAGE DETECT signal allows external system logic to distinguish between a
5 V 80960Cx processor and the 3.3 V 80960Hx processor. This signal is active low for a 3.3 V 80960Hx (it is high impedance for 5 V 80960Cx). This pin is available only on the PGA version.
0 = 80960Hx 1 = 80960Cx
Table 7. 80960Hx Processor Family Pin Descriptions (Sheet 4 of 4)
Name Type Description
80960HA/HD/HT
12 Advance Information Datasheet
3.2 80960Hx Mechanical Data
3.2.1 80960Hx PGA Pinout
Figure 2 depicts the complete 80960Hx PGA pinout as viewed from the top side of the component
(i.e., pins facing down). Figure 3 shows the complete 80960Hx PGA pinout as viewed from the pin-side of the package (i.e., pins facing up). Table 9 lists the 80960Hx pin names with package location. See Section 4.3, “Recommended Connections” on page 30 for specifications and recommended connections.
Figure 2. 80960Hx 168-Pin PGA Pinout — View from Top (Pins Facing Down)
D5D7D8D9D11D12D13D15D16D17D19D21D24D25
D2D4D6V
CC
D10V
CC
V
CC
D14V
CC
D18D20D23D27D29
NCD0V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
V
SS
V
CC
D22D31READY D26
D28BTERM
HOLDA
D30HOLD
BE3
V
CC
ADSBE2
V
SS
V
CC
BE1
V
SS
V
CC
BLAST
V
SS
BE0DEN
V
SS
V
CC
W/R
V
SS
V
CC
DT/R
A29LOCK
SUPWAIT BSTALL
A28
A30BREQD/C
D3
D1
ONCE
V
SS
VCC5
V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
CLKIN
V
CC
V
SS
BOFF
STEST
DP1
DP3
TCK
TMS
V
CC
PCHK
V
CC
VCCPLL
V
CC
NC
NC
V
CC
V
SS
FAIL
DP0
DP2
VOLDET
TRST
TDI
TDO
NC
NC
CTO
CT2
CT3
CT1
V
SS
A2
V
CC
A22A25
A20 V
SS
A3A5
NMI
V
CC
V
SS
V
SS
V
SS
VSSV
SS
A24A31 A26
A4V
CC
A6A8A9A10A11A12A14A15A17A18
V
CC
V
CC
V
CC
A13V
CC
A16A19A21A23A27 A7
XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
ABCDEFGHJKLMNPQRS
ABCDEFGHJKLMNPQRS
i
© 19xx
A80960Hx
XXXXXXXX SS
M
80960HA/HD/HT
Advance Information Datasheet 13
Figure 3. 80960Hx 168-Pin PGA Pinout — View from Bottom (Pins Facing Up)
D5 D7 D8 D9 D11 D12 D13 D15 D16 D17 D19 D21 D24 D25
D2 D4 D6 V
CC
D10 VCCVCCD14 VCCD18 D20 D23 D27 D29
NC D0 V
CCVSSVSSVSSVSSVSSVSSVCC
D22 D31 READYD26
D28 BTERM
HOLDA
D30 HOLD BE3
VCCADS BE2
VSSVCCBE1
VSSVCCBLAST
V
SS
BE0 DEN
VSSVCCW/R
VSSVCCDT/R
A29 LOCK
SUP WAITBSTALL
A28
A30 BREQ D/C
D3
D1
ONCE
V
SS
VCC5
V
CC
V
SS
V
SS
V
SS
V
SS
V
SS
CLKIN
V
CC
V
SS
BOFF
STEST
DP1
DP3
TCK
TMS
V
CC
PCHK
V
CC
VCCPLL
V
CC
NC
NC
V
CC
V
SS
FAIL
DP0
DP2
VOLDET
TRST
TDI
TDO
NC
NC
CT0
CT2
CT3
CT1
V
SS
A2
V
CC
A22 A25
A20V
SS
A3 A5
NMI
VCCV
SS
VSSV
SS
V
SS
V
SS
A24 A31A26
A4 V
CC
A6 A8 A9 A10 A11 A12 A14 A15 A17 A18
V
CCVCCVCC
A13 VCCA16 A19 A21
A23
A27A7XINT6
XINT7
XINT4
XINT3
XINT5
XINT0
RESET
XINT2
XINT1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
ABCDEFGHJKLMNPQRS
ABCDEFGHJKLMNPQRS
Package Lid
80960HA/HD/HT
14 Advance Information Datasheet
Table 8. 80960Hx 168-Pin PGA Pinout — Signal Name Order (Sheet 1 of 2)
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
A2 D16 ADS
R6 D14 L2 LOCK S14
A3 D17 BE0
R9 D15 L1 NC A9
A4 E16 BE1
S7 D16 M1 NC A10
A5 E17 BE2
S6 D17 N1 NC B13
A6 F17 BE3
S5 D18 N2 NC B14
A7 G16 BLAST
S8 D19 P1 NC D3
A8 G17 BOFF
B1 D20 P2 NMI D15
A9 H17 BREQ R13 D21 Q1 ONCE
C3
A10 J17 BSTALL R12 D22 P3 PCHK
B8
A11 K17 BTERM
R4 D23 Q2 READY S3
A12 L17 CLKIN C13 D24 R1 RESET
A16
A13 L16 CT0 A11 D25 S1 STEST B2 A14 M17 CT1 A12 D26 Q3 SUP
Q12
A15 N17 CT2 A13 D27 R2 TCK B5 A16 N16 CT3 A14 D28 Q4 TDI A7 A17 P17 D/C
S13 D29 S2 TDO A8 A18 Q17 D0 E3 D30 Q5 TMS B6 A19 P16 D1 C2 D31 R3 TRST
A6
A20 P15 D2 D2 DEN
S9 V
CC
B7
A21 Q16 D3 C1 DP0 A3 V
CC
B9
A22 R17 D4 E2 DP1 B3 V
CC
B11
A23 R16 D5 D1 DP2 A4 V
CC
B12
A24 Q15 D6 F2 DP3 B4 V
CC
C6
A25 S17 D7 E1 DT/R
S11 V
CC
C14
A26 R15 D8 F1 FAIL
A2 V
CC
E15
A27 S16 D9 G1 ——V
CC
F3
A28 Q14 D10 H2 ——V
CC
F16
A29 R14 D11 H1 ——V
CC
G2
A30 Q13 D12 J1 HOLD R5 V
CC
H16
A31 S15 D13 K1 HOLDA S4 V
CC
J2
80960HA/HD/HT
Advance Information Datasheet 15
V
CC
J16 VCCPLL B10 V
SS
H3 V
SS
Q10
V
CC
K2 VOLDET A5 V
SS
H15 V
SS
Q11
V
CC
K16 V
SS
A1 V
SS
J3 W/R S10
V
CC
M2 V
SS
C4 V
SS
J15 WAIT S12
V
CC
M16 V
SS
C7 V
SS
K3 XINT0 B15
V
CC
N3 V
SS
C8 V
SS
K15 XINT1 A15
V
CC
N15 V
SS
C9 V
SS
L3 XINT2 A17
V
CC
Q6 V
SS
C10 V
SS
L15 XINT3 B16
V
CC
R7 V
SS
C11 V
SS
M3 XINT4 C15
V
CC
R8 V
SS
C12 V
SS
M15 XINT5 B17
V
CC
R10 V
SS
F15 V
SS
Q7 XINT6 C16
V
CC
R11 V
SS
G3 V
SS
Q8 XINT7 C17
VCC5 C5 V
SS
G15 V
SS
Q9 ——
Table 8. 80960Hx 168-Pin PGA Pinout — Signal Name Order (Sheet 2 of 2)
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
80960HA/HD/HT
16 Advance Information Datasheet
Table 9. 80960Hx 168-Pin PGA Pinout — Pin Number Order (Sheet 1 of 2)
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
A1 V
SS
B14 NC E15 V
CC
K15 V
SS
A2 FAIL B15 XINT0 E16 A4 K16 V
CC
A3 DP0 B16 XINT3 E17 A5 K17 A11 A4 DP2 B17 XINT5
F1 D8 L1 D15 A5 VOLDET C1 D3 F2 D6 L2 D14 A6 TRST
C2 D1 F3 V
CC
L3 V
SS
A7 TDI C3 ONCE F15 V
SS
L15 V
SS
A8 TDO C4 V
SS
F16 V
CC
L16 A13
A9 NC C5 VCC5 F17 A6 L17 A12
A10 NC C6 V
CC
G1 D9 M1 D16
A11 CT0 C7 V
SS
G2 V
CC
M2 V
CC
A12 CT1 C8 V
SS
G3 V
SS
M3 V
SS
A13 CT2 C9 V
SS
G15 V
SS
M15 V
SS
A14 CT3 C10 V
SS
G16 A7 M16 V
CC
A15 XINT1 C11 V
SS
G17 A8 M17 A14
A16 RESET
C12 V
SS
H1 D11 N1 D17
A17 XINT2
C13 CLKIN H2 D10 N2 D18
B1 BOFF
C14 V
CC
H3 V
SS
N3 V
CC
B2 STEST C15 XINT4 H15 V
SS
N15 V
CC
B3 DP1 C16 XINT6 H16 V
CC
N16 A16
B4 DP3 C17 XINT7
H17 A9 N17 A15 B5 TCK D1 D5 J1 D12 P1 D19 B6 TMS D2 D2 J2 V
CC
P2 D20
B7 V
CC
D3 NC J3 V
SS
P3 D22
B8 PCHK
D15 NMI J15 V
SS
P15 A20
B9 V
CC
D16 A2 J16 V
CC
P16 A19 B10 VCCPLL D17 A3 J17 A10 P17 A17 B11 V
CC
E1 D7 K1 D13 Q1 D21
B12 V
CC
E2 D4 K2 V
CC
Q2 D23
B13 NC E3 D0 K3 V
SS
Q3 D26
80960HA/HD/HT
Advance Information Datasheet 17
Q4 D28 Q16 A21 R11 V
CC
S6 BE2 Q5 D30 Q17 A18 R12 BSTALL S7 BE1 Q6 V
CC
R1 D24 R13 BREQ S8 BLAST
Q7 V
SS
R2 D27 R14 A29 S9 DEN
Q8 V
SS
R3 D31 R15 A26 S10 W/R
Q9 V
SS
R4 BTERM R16 A23 S11 DT/R
Q10 V
SS
R5 HOLD R17 A22 S12 WAIT
Q11 V
SS
R6 ADS S1 D25 S13 D/C
Q12 SUP R7 V
CC
S2 D29 S14 LOCK
Q13 A30 R8 V
CC
S3 READY S15 A31
Q14 A28 R9 BE0
S4 HOLDA S16 A27
Q15 A24 R10 V
CC
S5 BE3 S17 A25
Table 9. 80960Hx 168-Pin PGA Pinout — Pin Number Order (Sheet 2 of 2)
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
PGA
Pin
Signal Name
80960HA/HD/HT
18 Advance Information Datasheet
3.2.2 80960Hx PQ4 Pinout
Figure 4. 80960Hx 208-Pin PQ4 Pinout
PIN 1
PIN 208
PIN 52
PIN 53
PIN 104
PIN 157
PIN 156
V
CC
VSSV
SS
V
CC
FAI L
ONCE
V
SS
V
CC
BOFF
V
CC
D0D1D2
D3
V
SS
V
CC
V
SS
V
CC
D4D5D6
D7
V
SS
V
CC
D8
D9
D10
V
CC
V
SS
VCCD12
D13
D14
D15
VCCD16
D17
D18
D19
V
SS
VCCD21
D22
D23
PIN 105
V
SS
D24
D25
D26
D27
V
SS
V
CC
V
CC
D28
D29
D30
D31
V
SS
V
CC
BTERM
READY
HOLD
HOLDA
V
SS
V
CC
V
SS
V
CC
V
SS
V
CC
ADS
BE3
BE2
V
SS
V
CC
BE1
BE0
BLAST
DEN
V
SS
V
CC
W/R
DT/R
WAIT
BSTALL
V
CC
V
SS
V
SS
V
CC
D/C
SUP
V
SS
LOCK
BREQ
V
CC
V
CC
V
SS
VSSVSSVCCVCCVSSA2A3VCCVSSA4A5A6A7VCCVSSA8A9A10
A11
VCCVSSA12
A13
A14
A15
VCCVSSVSSVCCA16
A17
A18
A19
VCCVSSA20
A21
A22
A23
VCCVSSVCCVSSA24
A25
A26
A27
VCCVSSA28
A29
A30
V
SS
V
CC
NMI XINT7 XINT6 XINT5 XINT4
V
SS
V
CC
XINT3 XINT2 XINT1 XINT0
V
SS
V
CC
V
SS
V
CC
RESET
CLKIN
VCCPLL
V
SS
V
CC
CT3
CT2
CT1
CT0
V
SS
V
CC
V
SS
V
CC
TDO
PCHK
V
SS
TDI
TMS
TRST
TCK
V
SS
V
CC
VCC5
V
CC
V
SS
V
CC
DP3
DP2
V
CC
V
SS
DP0
DP1
STEST
D11
V
SS
A31
V
SS
V
CC
D20
V
CC
V
SS
V
SS
i
XXXXXXXX SS
M
©19xx
i960
®
FC80960Hx
V
CC
V
SS
80960HA/HD/HT
Advance Information Datasheet 19
Table 10. 80960Hx PQ4 Pinout — Signal Name Order (Sheet 1 of 2)
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
A2 151 BE0
83 D16 39 PCHK 189
A3 150 BE1
82 D17 40 READY 68
A4 147 BE2
79 D18 41 RESET 174
A5 146 BE3
78 D19 42 STEST 208
A6 145 BLAST
84 D20 45 SUP 97
A7 144 BOFF
10 D21 50 TCK 194 A8 141 BREQ 100 D22 51 TDI 191 A9 140 BSTALL 91 D23 52 TDO 188
A10 139 BTERM
67 D24 54 TMS 192
A11 138 CLKIN 175 D25 55 TRST
193
A12 135 CT0 183 D26 56 V
CC
1
A13 134 CT1 182 D27 57 V
CC
4
A14 133 CT2 181 D28 61 V
CC
9
A15 132 CT3 180 D29 62 V
CC
11
A16 127 D/C
96 D30 63 V
CC
17
A17 126 D0 12 D31 64 V
CC
19
A18 125 D1 13 DEN
85 V
CC
25
A19 124 D2 14 DP0 206 V
CC
31
A20 121 D3 15 DP1 207 V
CC
33
A21 120 D4 20 DP2 203 V
CC
38
A22 119 D5 21 DP3 202 V
CC
44
A23 118 D6 22 DT/R
89 V
CC
46
A24 113 D7 23 FAIL
5 V
CC
49
A25 112 D8 26 ——V
CC
59
A26 111 D9 27 ——V
CC
60
A27 110 D10 28 ——V
CC
66
A28 107 D11 29 HOLD 69 V
CC
71
A29 106 D12 34 HOLDA 72 V
CC
74
A30 105 D13 35 LOCK
99 V
CC
76
A31 104 D14 36 NMI
159 V
CC
81
ADS
77 D15 37 ONCE 6 V
CC
87
80960HA/HD/HT
20 Advance Information Datasheet
V
CC
92 V
CC
187 V
SS
70 V
SS
164
V
CC
95 V
CC
196 V
SS
73 V
SS
170
V
CC
101 V
CC
199 V
SS
75 V
SS
172
V
CC
102 V
CC
201 V
SS
80 V
SS
178
V
CC
109 V
CC
204 V
SS
86 V
SS
184
V
CC
115 VCC5 197 V
SS
93 V
SS
186
V
CC
117 VCCPLL 177 V
SS
94 V
SS
190
V
CC
123 V
SS
2 V
SS
98 V
SS
195
V
CC
128 V
SS
3 V
SS
103 V
SS
198
V
CC
131 V
SS
7VSS108 V
SS
200
V
CC
137 V
SS
8 V
SS
114 V
SS
205
V
CC
143 V
SS
16 V
SS
116 W/R 88
V
CC
149 V
SS
18 V
SS
122 WAIT 90
V
CC
153 V
SS
24 V
SS
129 XINT0 169
V
CC
154 V
SS
30 V
SS
130 XINT1 168
V
CC
158 V
SS
32 V
SS
136 XINT2 167
V
CC
165 V
SS
43 V
SS
142 XINT3 166
V
CC
171 V
SS
47 V
SS
148 XINT4 163
V
CC
173 V
SS
48 V
SS
152 XINT5 162
V
CC
176 V
SS
53 V
SS
155 XINT6 161
V
CC
179 V
SS
58 V
SS
156 XINT7 160
V
CC
185 V
SS
65 V
SS
157 ——
Table 10. 80960Hx PQ4 Pinout — Signal Name Order (Sheet 2 of 2)
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
80960HA/HD/HT
Advance Information Datasheet 21
Table 11. 80960Hx PQ4 Pinout — Pin Number Order (Sheet 1 of 2)
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
1 V
CC
31 V
CC
61 D28 91 BSTALL
2 V
SS
32 V
SS
62 D29 92 V
CC
3 V
SS
33 V
CC
63 D30 93 V
SS
4 V
CC
34 D12 64 D31 94 V
SS
5 FAIL 35 D13 65 V
SS
95 V
CC
6 ONCE 36 D14 66 V
CC
96 D/C
7 V
SS
37 D15 67 BTERM 97 SUP
8 V
SS
38 V
CC
68 READY 98 V
SS
9 V
CC
39 D16 69 HOLD 99 LOCK
10 BOFF 40 D17 70 V
SS
100 BREQ
11 V
CC
41 D18 71 V
CC
101 V
CC
12 D0 42 D19 72 HOLDA 102 V
CC
13 D1 43 V
SS
73 V
SS
103 V
SS
14 D2 44 V
CC
74 V
CC
104 A31
15 D3 45 D20 75 V
SS
105 A30
16 V
SS
46 V
CC
76 V
CC
106 A29
17 V
CC
47 V
SS
77 ADS 107 A28
18 V
SS
48 V
SS
78 BE3 108 V
SS
19 V
CC
49 V
CC
79 BE2 109 V
CC
20 D4 50 D21 80 V
SS
110 A27
21 D5 51 D22 81 V
CC
111 A26
22 D6 52 D23 82 BE1
112 A25
23 D7 53 V
SS
83 BE0 113 A24
24 V
SS
54 D24 84 BLAST 114 V
SS
25 V
CC
55 D25 85 DEN 115 V
CC
26 D8 56 D26 86 V
SS
116 V
SS
27 D9 57 D27 87 V
CC
117 V
CC
28 D10 58 V
SS
88 W/R 118 A23
29 D11 59 V
CC
89 DT/R 119 A22
30 V
SS
60 V
CC
90 WAIT 120 A21
80960HA/HD/HT
22 Advance Information Datasheet
121 A20 143 V
CC
165 V
CC
187 V
CC
122 V
SS
144 A7 166 XINT3 188 TDO
123 V
CC
145 A6 167 XINT2 189 PCHK
124 A19 146 A5 168 XINT1 190 V
SS
125 A18 147 A4 169 XINT0 191 TDI 126 A17 148 V
SS
170 V
SS
192 TMS
127 A16 149 V
CC
171 V
CC
193 TRST
128 V
CC
150 A3 172 V
SS
194 TCK
129 V
SS
151 A2 173 V
CC
195 V
SS
130 V
SS
152 V
SS
174 RESET 196 V
CC
131 V
CC
153 V
CC
175 CLKIN 197 VCC5
132 A15 154 V
CC
176 V
CC
198 V
SS
133 A14 155 V
SS
177 VCCPLL 199 V
CC
134 A13 156 V
SS
178 V
SS
200 V
SS
135 A12 157 V
SS
179 V
CC
201 V
CC
136 V
SS
158 V
CC
180 CT3 202 DP3
137 V
CC
159 NMI 181 CT2 203 DP2
138 A11 160 XINT7
182 CT1 204 V
CC
139 A10 161 XINT6 183 CT0 205 V
SS
140 A9 162 XINT5 184 V
SS
206 DP0
141 A8 163 XINT4
185 V
CC
207 DP1
142 V
SS
164 V
SS
186 V
SS
208 STEST
Table 11. 80960Hx PQ4 Pinout — Pin Number Order (Sheet 2 of 2)
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
PQ4
Pin
Signal Name
80960HA/HD/HT
Advance Information Datasheet 23
3.3 Package Thermal Specifications
The 80960Hx is specified for operation when TC(case temperature) is within the range of 0°C–85°C. T
C
may be measured in any environment to determine whether the 80960Hx is within the specified operating range. Measure the case temperature at the center of the top surface, opposite the pins. Refer to Figure 5.
T
A
(ambient temperature) is calculated from θCA(thermal resistance from case to ambient) using
the equation:
TA=TC–P*θ
CA
Table 12 shows the maximum TAallowable (without exceeding TC) at various airflows and
operating frequencies (f
CLKIN
).
Note that T
A
is greatly improved by attaching fins or a heatsink to the package. P (maximum power
consumption) is calculated by using the typical I
CC
as tabulated in Section 4.6, “DC
Specifications” on page 32 and V
CC
of 3.3 V.
Figure 5. Measuring 80960Hx PGA Case Temperature
Measure PGA/PQ4 temperature at center of top surface
80960HA/HD/HT
24 Advance Information Datasheet
Table 12. Maximum T
A
at Various Airflows in °C (PGA Package Only)
Airflow-ft/min (m/sec)
f
CLKIN
(MHz)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.07)
Core 1X Bus Clock
T
A
with
Heatsink*
25 33 40
69 63 59
74 70 67
78 75 73
79 77 75
80 79 77
80 79 77
T
A
without Heatsink
25 33 40
64 56 50
67 62 56
71 67 63
74 70 67
75 72 69
76 74 71
Core 2X Bus Clock
T
A
with
Heatsink*
16 25 33 40
68 58 49 41
73 66 60 55
77 73 69 65
79 75 71 68
80 77 74 72
80 77 74 72
T
A
without Heatsink
16 25 33 40
62 49 38 27
66 56 46 38
71 62 55 48
73 66 60 55
75 68 63 58
76 71 66 62
Core 3X Bus Clock
T
A
with
Heatsink*
20 25
53 45
63 58
71 67
73 70
76 73
76 73
T
A
without Heatsink
20 25
43 33
51 42
58 51
63 58
66 61
68 64
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
Table 13. 80960Hx 168-Pin PGA Package Thermal Characteristics
Thermal Resistance — °C/Watt
Parameter
Airflow — ft./min (m/ sec)
0
(0)
200
(1.01)
400
(2.03)
600
(3.07)
800
(4.06)
1000
(5.07)
θ Junction-to-Case (Case measured as shown in Figure 5)
1.51.51.51.51.51.5
θ Case-to-Ambient (No Heatsink)
17 14 11 9 8 7
θ Case-to-Ambient (With Heatsink)*
1396544
NOTES:
1. This table applies to 80960Hx PGA plugged into s ocket or soldered directly to board.
2. θ
JA
= θJC+ θ
CA
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
θ
JC
θ
JA
80960HA/HD/HT
Advance Information Datasheet 25
Ta ble 14. Maximum T
A
at Various Airflows in °C (PQ4 Package Only)
Airflow-ft/min (m/sec)
f
CLKIN
(MHz)
0
(0)
200
(1.01)
400
(2.03)
600
(3.04)
800
(4.06)
1000
(5.07)
Core 1X Bus Clock
T
A
with
Heatsink*
25 33 40
71 67 63
76 74 71
79 77 75
79 77 75
80 79 77
80 79 77
T
A
without Heatsink
25 33 40
70 65 61
73 68 65
75 72 69
75 72 69
76 74 71
76 74 71
Core 2X Bus Clock
T
A
with
Heatsink*
16 25 33 40
71 62 55 48
76 71 66 62
79 75 71 68
79 75 71 68
80 77 74 72
80 77 74 72
T
A
without Heatsink
16 25 33 40
69 60 52 42
72 64 57 51
75 68 63 58
75 68 63 58
76 71 66 62
76 71 66 62
Core 3X Bus Clock
T
A
with
Heatsink*
20 25
58 51
68 64
73 70
73 70
76 73
76 73
T
A
without Heatsink
20 25
56 48
61 55
66 61
66 61
68 64
68 64
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
Table 15. 80960Hx 208-Pin PQ4 Package Thermal Characteristics
Thermal Resistance — °C/Watt
Parameter
Airflow — ft./min (m/sec)
0
(0)
200
(1.01)
400
(2.03)
600
(3.07)
800
(4.06)
1000
(5.07)
θ Junction-to-Case (Case measured as shown in Figure 5)
111111
θ Case-to-A mbient (No Heatsink)
12 10 8 8 7 7
θ Case-to-A mbient (With Heatsink)*
1175544
NOTES:
1. This table applies to 80960Hx PQ4 plugged into socket or soldered directly to board.
2. θ
JA
= θJC+ θ
CA
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).
θ
JC
θ
JA
80960HA/HD/HT
26 Advance Information Datasheet
3.4 Heat Sink Adhesives
Intel recommends silicone-based adhesives to attach heat sinks to the PGA package. There is no particular recommendation concerning the PQ4 package.
3.5 PowerQuad4 Plastic Package
The 80960Hx family is available in an improved version of the c ommon 208-lead SQFP plastic package called the PowerQuad4* (PQ4). T he PQ4 package dimensions and lead pitch are identical to the SQFP package and the former PQ2 package, so the PQ4 fits into the same board footprint. The advantage of the PQ4 package is the superior thermal conductivity that allows the plastic version of the 80960Hx to operate with the same 0-85°C temperature specifications as the more expensive ceramic PGA package.
The PQ4 package integrates a copper heat sink within the package to dissipate heat effectively. See
Table 14 and Table 15.
3.6 Stepping Register Information
The memory-mapped register at FF008710H contains the 80960Hx Device ID. The ID is identical to the ID obtained from a JTAG Query. Figure 6 defines the current 80960Hx Device IDs. The value for device identification is compliant with the IEEE 1149.1 specification and Intel standards.
Table 16 describes the fields of the device ID.
Figure 6. 80960Hx Device Identification Register
28 24 20
40
16 12 8
110010000000
Manufacturer ID
Part Number
Version ModelGen
Product
TypeV
CC
01000010001
1
80960HA/HD/HT
Advance Information Datasheet 27
Table 16. Fields of 80960Hx Device ID
Field Value Definition
Version See Table 18 Indica tes major st epping changes. V
CC
1 = 3.3 V device Indicates that a device is 3.3 V.
Product Type
00 0100 (Indicates i960 CPU)
Designates type of product. Generation Type 0010 = H-series Indica tes the generation (or ser i es) the product belongs to.
Model See Table 17
Indicates member within a series and specific model
information.
Manufacturer ID
000 0000 1001 (Indicates Intel)
Manufacturer ID assigned by IEEE.
Table 17. 80960Hx Device ID Model Types
Device Version V
CC
Product Gen. Model Manufacturer ID ‘1’
80960HA
See
Table 18
1 000100 0010 00000 00000001001 1
80960HD 1 000100 0010 00001 00000001001 1
80960HT 1 000100 0010 00010 00000001001 1
Table 18. Device ID Version Numbers for Different Steppings
Stepping Version
A0 0000 A1 0001 A2 0001
B0, B2 0010
This data sheet applies to the B2 stepping.
80960HA/HD/HT
28 Advance Information Datasheet
3.7 Sources for Accessories
The following is a list of suggested sources for 80960Hx accessories. This is neither an endorsement nor a warranty of the performance of any of the listed p roducts and/or companies.
Sockets
3M Textool Test and Interconnection Products
6801 River Place Blvd. MS 130-3N-29 Austin, TX 78726-9000 (800) 328-0411 FAX: (800) 932-9373
Concept Mfg, Inc. (Decoupling Sockets)
400 Walnut St. Suite 609 Redwood City, CA 94063 (415) 365-1162 FAX: (415) 365-1164
Heatsinks/Fins
Thermalloy, Inc.
2021 West Valley View Lane Dallas, TX 75234-8993 (972) 243-4321 FAX: (972) 241-4656
Wakefield Engineering, Inc.
60 Audubon Road Wakefield, MA 01880 (617) 245-5900 FAX: (617) 246-0874
Aavid Thermal Technologies, Inc.
One Kool Path Laconia, NH 03247-0400 (603) 523-3400
80960HA/HD/HT
Advance Information Datasheet 29
4.0 Electrical Specifications
4.1 Absolute Maximum Ratings
4.2 Operating Conditions
Parameter Maximum Rating
Storage Temperature –65 ºC to +150 ºC Case Temperature Under Bias –65oC to +110oC Supply Voltage with respect to V
SS
–0.5 V to + 4.6 V
Voltage on VCC5 with respect to V
SS
–0.5 V to + 6.5 V
Voltage on Other Pins with respect to V
SS
–0.5 V to VCC5 + 0.5 V
Notice: This document contains information on products in the sampling and initial
production phases of development. It is valid for the devices indicated in the revision history. The specifications within this data sheet are subject to change without notice. Verify with your local Intel sales office that you have th e latest data sheet before finalizing a design.
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause
permanent damage. These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended and extended exposure beyond the “Operating Conditions” may affect device reliability.
Table 19. Operating Conditions
Symbol Parameter Min Max Units
V
CC
Supply Voltage 3.15 3.45 V VCC5 Input Protection Bias 3.15 5.5 V f
CLKIN
1xcore Input Clock Frequency - 1x Core (80960HA) 16 40 MHz
f
CLKIN
2xcore Input Clock Frequency - 2x Core (80960HD) 16 40 MHz
f
CLKIN
3xcore Input Clock Frequency - 3x Core (80960HT) 16 25 MHz
T
C
Case Temp Under Bias (PGA and PQ4 Packages) 0 85
o
C
80960HA/HD/HT
30 Advance Information Datasheet
4.3 Recommended Connections
Power and ground connections must be made to multiple VCCand VSS(GND) pins. Every 80960Hx-based circuit board should include power (V
CC
) and ground (VSS) planes for power
distribut i o n.Every V
CC
pin must be connected to the power plane; everyVSSpin must be connected to
the ground plane. Pins identified as “NC” —no connect pins—must not be connected in the system. Liberal decoupling capacitance shouldbe placed near the 80960Hx. The processor can cause transient
power surges when its output buffers transition, particularly when connected to large capacitive loads. Low inductance capacitors and interconnects are recommended for best high-frequency electrical
performance. Inductance can be reduced by shortening the board traces between the processor and decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages offer the lowest possible inductance.
For reliable operation, always connect unused inputs to an appropriate signal level. In particular, any unused interrupt (XINT7:0
,NMI) input should be connected to VCCthrough a pull-up resistor,
as should BTERM
if not used. Pull-up resistors should be in the range of 20 Kfor each pin tied
high. If READY
or HOLD are not used, the unused input should be connected to ground. N.C. pins
must always remain unconnected.
4.4 VCC5 Pin Requirements (V
DIFF
)
In mixed-voltage systems that drive 80960Hx processor inputs in excess of 3.3 V, the VCC5 pin must be connected to the system’s 5 V supply. To limit current flow into the VCC5 pin, there is a limit to the voltage differential between the VCC5 pin and the other V
CC
pins. The voltage differential
between the 80960Hx VCC5 pin and its 3.3 V V
CC
pins should never exceed 2.25 V. This limit
applies to power-up, power-down, and steady-state operation. Table 20 outlines this requirement. Meeting this requirement ensures proper operation and guarantees that the current draw into the
VCC5 pin does not exceed the I
CC5
specification.
If the voltage difference requirements cannot be met due to system design limitations, an alternate solution may be employed. As shown in Figure 7, a minimum of 100 series resistor may be used to limit the current into the VCC5 pin. This resistor ensures that current drawn by the VCC5 pin does not exceed the maximum rating for this pin.
This resistor is not necessary in systems that can guarantee the V
DIFF
specification.
In 3.3 V-only systems and systems that drive 80960Hx pins from 3.3 V logic, connect the VCC5 pin directly to the 3.3 V V
CC
plane.
Figure 7. VCC5 Current-Limiting Resistor
+5 V (±0.25 V)
VCC5 Pin
100
(±5%, 0.5 W)
Table 20. V
DIFF
Specification for Dual Power Supply Requirements (3.3 V, 5 V)
Sym Parameter Min Max Units Notes
V
DIFF
VCC5-V
CC
Difference
2.25 V
VCC5 input should not exceed V
CC
by more than 2.25 V during
power-up and power-down, or during steady- state operation.
80960HA/HD/HT
Advance Information Datasheet 31
4.5 VCCPLL Pin Requirem ents
If the voltage on the VCCPLL power supply pin exceeds the VCCpin voltage by 0.5 V at any time, including the power up and power down sequences, excessive currents can permanently damage on-chip electrostatic discharge (ESD) protection diodes. The damage can accumulate over multiple episodes.
Pragmatically, this problem only occurs when the VCCPLL and V
CC
pins are driven by separate power supplies or voltage regulators. Applications that use one power supply for VCCPLL and V
CC
are not typically at risk. Verify that your application does not allow the VCCPLL voltage to
exceed V
CC
by 0.5 V.
The VCCPL low-pass filter recommended in the Developer’s Manual does not promote this problem.
80960HA/HD/HT
32 Advance Information Datasheet
4.6 DC Specifications
Table 21. 80960Hx DC Characteristics (Sheet 1 of 2)
Per the conditions described in Section 4.3, “Recommended Connections” on page 30.
Symbol Parameter Min Typ Max Units Notes
V
IL
Input Low Voltage – 0.3 +0.8 V
V
IH
Input High Voltage 2.0 VCC5 + 0.3 V
V
OL
Output Low Voltage All outputs except FAIL
0.4
0.2
V
IOL=3mA I
OL
= 100 µA
V
OL
Output Low Voltage FAIL pin 0.4 V IOL=5mA
V
OH
Output High Voltage
2.4
V
CC
–0.2
VVI
OH
=–3mA
I
OH
= –100 µA
I
LI
Input Leakage Current
Non-Test Inputs
TDI, TMS, TRST
and ONCE
-1
1
-110
µAµA0 V
IN
V
CC
VIN=0V
I
LO
Output Leakage Current
Non-Test Outputs
TDO pin
1 5
µAµA0.45 ≤ V
OUT
V
CC
0.45 ≤ V
OUT
V
CC
ICCActive (Power Supply)
80960HA 25
33 40
80960HD 32
50 66 80
80960HT 60
75
579 765 927
631
985 1300 1578
1165 1455
mA (4,5)
I
CC
Active
(Thermal)
80960HA 25
33 40
80960HD 32
50 66 80
80960HT 60
75
392 518 628
413 645 851
1034
752 938
mA (4,6)
I
CC
Test (Reset Mode)
80960HA 25
33 40
80960HD 32
50 66 80
80960HT 60
75
330 436 528
382 595 785 955
702 878
mA (7,8)
I
CC
Test (ONCE mode)
25 mA (7)
80960HA/HD/HT
Advance Information Datasheet 33
I
CC5
Current on the VCC5 Pin
80960HA 80960HD
80960HT
200 200 200
µA (9)
C
IN
Input Capacitance for:
PQ4
PGA
12 12
pF pF
F
C
= 1 MHz (10)
C
OUT
Output Capacitance of each output pin
12 pF F
C
= 1 MHz (3,10)
C
I/O
I/O Pin Capacitance 12 pF FC= 1 MHz (10)
R
PU
Internal Pu ll-Up Resistance for ONCE
,TMS,TDIand
TRST
30 65 100 k
NOTES:
1. I
CC
Maximum is measured at worst case frequency, VCC, and temperature, with device operating and
outputs loaded to the test conditions described in Section 4.7.1, “AC Test Conditions” on page 37.
2. I
CC
Typical is not tested.
3. Output Capacitance is the capacitive load of a floating output.
4. Measured with device operating and outputs loaded to the test conditions in Figure 8 “AC Test Load” on
page 37. Input signals rise to V
CC
and fall to VSS.
5. I
CC
Active (Power Supply) value is provided for selecting your system’s power supply.It is measured using
one of the worst case instruct ion mixes with V
CC
= 3.45 V. This parameter is characterized but not tested.
6. I
CC
Active (Thermal) value is provided for your system’s thermal management. TypicalICCis measured with
V
CC
= 3.3 V and temperature = 25°C. This parameter is characterized but not tested.
7. I
CC
Test (Powermodes) refers to the ICCvalues that are tested when the 80960HA/HD/HT is in Reset mode
or ONCE mode with V
CC
=3.45V.
8. Worst case is V
CC
=3.45V,0°C.
9. I
CC5
is tested at VCC=3.0V,VCC5=5.25V.
10.Pin capacitance is characterized, but not tested.
Table 21. 80960Hx DC Characteristics (Sheet 2 of 2)
Per the conditions described in Section 4.3, “Recommended Connections” on page 30.
Symbol Parameter Min Typ Max Units Notes
80960HA/HD/HT
34 Advance Information Datasheet
4.7 AC S p ecifications
Table 22. 80960Hx AC Characteristics (Sheet 1 of 2)
Per conditions in Section 4.2, “Operating Conditions” on page 29 and Section 4. 7.1, “AC Test Conditions” on page 37.
Symbol Parameter Min Max Units Notes
Input Clock (1,7)
T
F
CLKIN Frequency 80960HA
80960HD 80960HT
16 16 16
40 40 25
MHz MHz MHz
T
CLKIN Period 80960HA
80960HD 80960HT
25 25 40
62.5
62.5
62.5
ns ns ns
T
CS
CLKIN Period Stability -250 +250 ps (11)
T
CH
CLKIN High Time 8 ns (11)
T
CL
CLKIN Low Time 80960HA
80960HD 80960HT
8 8 8
ns ns ns
(11)
T
CR
CLKIN Rise Time 0 4 ns (11)
T
CF
CLKIN Fall Time 0 4 ns (11)
Synchronous Outputs (1,2,3,6)
T
OV1,TOH1
Output Valid Delay and Output Hold for all outputs except DT/R
,BLASTand BREQ for
3.3 V and 5 V inputs and I/Os.
1.5 9.5 ns
T
OV2,TOH2
Output Valid Delay and Output Hold for DT/R
80960HA
80960HD
80960HT
T/2 + 1.5 3T/4 + 1.5 5T/6 + 1.5
T/2 + 9.5 3T/4 + 9.5 5T/6 + 9.5
ns ns ns
T
OV3,TOH3
Output Valid Delay and Output Hold for BLAST 1.5 9 ns
T
OV4,TOH4
Output Valid Delay and Output Hold for BREQ 0. 5 9 ns
T
OV5,TOH5
Output Valid Delay and Output Hold for A3:2 1.5 8.5
T
OF
Output Float for all outputs 1.5 9 ns (11)
Synchronous Inputs (1,7,8,9)
T
IS1
Input Setup for all inputs except READY,BTERM,
HOLD, and BOFF
2.5 ns
T
IH1
Input Hold for all inputs exceptREADY,BTERM,
HOLD, and BOFF
2.5 ns
T
IS2
Input Setup for READY,BTERM, HOLD, and
BOFF
6ns
NOTE: See Table 23 “AC Characteristics Notes” on page 36 for all notes related to AC specifications.
80960HA/HD/HT
Advance Information Datasheet 35
T
IH2
Input Hold for READY,BTERM, HO LD, and
BOFF
2.5 ns
Relative Output Timings (1,2,3,6,10)
T
AVSH1
A31:2 Valid to ADS Rising T – 5 T + 5 ns (10)
T
AVSH2
BE3:0,W/R,SUP,D/CValid to ADS Rising T – 5 T + 5 ns (10)
T
AVEL1
A31:2 Valid to DEN Falling T – 5 T + 5 ns (10)
T
AVEL2
BE3:0,W/R,SUPValidtoDENFalling T – 5 T + 5 ns (10)
T
NLQV
WAIT Falling to Output Data Valid -5 5 ns (10)
T
DVNH
Output Data Valid to WAIT Rising -5 + N*T 5 + N*T ns (4,10)
T
NLNH
WAIT Falling to WAIT Rising -4 + N*T 4 + N*T ns (4,10)
T
NHQX
Output Data Hold after WAIT Rising -5+ (N+1)*T 5 + (N+1)*T ns (5,10)
T
EHTV
DT/R Hold after DEN High T/2 – 5 Infinite ns (10)
T
TVEL
DT/R Valid to DEN Falling
80960HA 80960HD
80960HT
T/2 – 4 T/4 – 4 T/6 – 4
ns ns ns
(10)
Relative Input Timings (1,7,10)
T
IS7
XINT7:0,NMIInput Setup 6 ns ( 9)
T
IH7
XINT7:0,NMIInput Hold 2.5 ns (9)
T
IS8
RESET Input Setup 3 ns (8)
T
IH8
RESET Input Hold T/4 + 1 ns (8)
Table 22. 80960Hx AC Characteristics (Sheet 2 of 2)
Per conditions in Section 4.2, “Operating Conditions” on page 29 and Section 4.7.1, “AC Test Conditions” on page 37.
Symbol Parameter Min Max Uni ts Not es
NOTE: See Table 23 “AC Characteristics Notes” on page 36 for all notes related to AC specifications.
80960HA/HD/HT
36 Advance Information Datasheet
Table 23. AC Characteristics Notes
NOTES:
1. See Section 4.8, “AC Timing Waveforms” on page 38 for waveforms and definitions.
2. See Figure 25 “Output Delay or Hold vs. Load Capacitance” on page 44 for capacitive derating informat ion for output delays and hold times.
3. See Figure 22 “Rise and Fall Time Derating at 85°C and Minimum V
CC
” on page 43 f o r capacitive derating
information for rise and fall times.
4. Where N is the number of N
RAD,NRDD,NWAD
or N
WDD
wait states that are programmed in the Bus
Controller Region Table. WAIT
never goes active when there a re no wait states in an access.
5. N = Number of wait states inserted with READY
.
6. These specifications are guaranteed by the processor.
7. These specifications must be met by the system for proper operation of the processo r.
8. RESET
is an asynchronous input that has no require d setup and hold time for pr oper operation. However, to guarantee the device exits the reset mode synchronized to a particular clock edge, the rising edg e of RESET
must meet setup an d hold times to t he rising edge of the CLKIN.
9. The interrupt pins are synchronized internally by the 80960Hx. They have no required setup or hold times for proper operation. These pins are sampled by the interrupt controller every clock and must be active for at least two consecutive CLKIN rising edges when asserting them asynchronously. Toguarantee recognition at a particular clock edge, the setup and hold times shown must be met.
10.Relative O ut put timings are not test ed.
11.Not tested.
12.The processor minimizes changes to the bus signals when transitioning from a bus cycle to an idle bus for the following signals: A31:4, SUP
,CT3:0,D/C,LOCK,W/R, BE3:0.
Table 24. 80960Hx Boundary Scan Test Signal Timings
Symbol Parameter Min Max Units Notes
T
BSF
TCK Frequency 0 8 MHz
T
BSC
TCK Period 125 Infinite ns
T
BSCH
TCK High Time 40 ns Measured at 1.5 V (1)
T
BSCL
TCK Low Time 40 ns Measured at 1.5 V (1)
T
BSCR
TCK Rise Time 8 ns 0.8 V to 2.0 V (1)
T
BSCF
TCK Fall Time 8 ns 2.0 V to 0. 8 V (1)
T
BSIS1
Input Setup to TCK — TDI, TMS
8ns
T
BSIH1
Input Hold from TCK — TDI, TMS
10 ns
T
BSOV1
TDO Valid Delay 3 30 ns
T
BSOF1
TDO Float Delay 36 ns (1)
T
BSOV2
All Outputs (Non-Test) ValidDelay
330ns
Relative to TCK
T
BSOF2
All Outputs (Non-Test) Float Delay
36 ns
Relative to TCK (1)
T
BSIS2
Input Setup to TCK - All Inputs (Non-Test)
8ns
T
BSIH2
Input Hold from TCK - All Inputs (Non-Test)
10 ns
NOTE:
1. Not tested.
80960HA/HD/HT
Advance Information Datasheet 37
4.7.1 AC Test Conditions
AC values are derived using the 50 pF load shown in Figure 8. Figure25“OutputDelayorHoldvs.
Load Capacitance” on page 44, shows how timings vary with load capacitance. Input waveforms
(except for CLKIN) are assumed to have a rise and fall time of 2nsfrom0.8Vto2.0V.
Figure 8. AC Test Load
Output Pin
C
L
= 50 pF for all signals
C
L
80960HA/HD/HT
38 Advance Information Datasheet
4.8 AC Timing Waveforms
Figure 9. CLKIN Waveform
Figure 10. Output Delay Waveform
Figure 11. Output Delay Waveform
2.0 V
1.5 V
0.8 V
T
CF
T
CH
T
CL
T
T
CR
CLKIN
Outputs:
1.5 V
1.5 V
T
OV1
Min
Max
T
OH1
1.5 V
1.5 V
A31:2, D31:0 write only,
DP3:0 write only
PCHK
,BE3:0,W/R,D/C,
SUP
,ADS,DEN,
LOCK
,HOLDA,BREQ,BSTALL,
CT3:0, FAIL
,WAIT, BLAST
CLKIN
1.5 V
1.5 V
DT/R
Min
Max
T
OH2
1.5 V
1.5 V
T
OV2
80960HA/HD/HT
Advance Information Datasheet 39
Figure 12. Output Float Waveform
Figure 13. Input Setup and Hold Waveform
Figure 14. NMI
,XINT7:0Input Setup and Hold Waveform
Min
Max
T
OF
Outputs:
A31:2, D31:0 write only,
DP3:0 write only
PCHK
, BE3:0,W/R,D/C,
SUP
,ADS,DEN,
LOCK
,HOLDA,
CT3:0, WAIT
,BLAST,DT/R
CLKIN
1.5 V
1.5 V
CLKIN
Inputs:
1.5 V1.5 V1.5 V
Valid
T
IS
T
IH
READY, HOLD,BTERM,
BOFF
, D31:0 on reads,
Min
Min
DP3:0onreads,RESET
CLKIN
1.5 V1.5 V1.5 V
Valid
T
IS
T
IH
NMI, XINT7:0
Min
Min
1.5 V
1.5 V
A
B
A
NOTE: A and B edges are established by de-assertion of RESET .SeeFigure 29 “Cold Reset Waveform” on page 46.
80960HA/HD/HT
40 Advance Information Datasheet
Figure 15. Hold Acknowledge Timings
Figure 16. Bus Backoff (BOFF
) Timings
CLKIN
1.5 V
1.5 V
1.5 V
HOLD
T
IS
T
IH
1.5 V
T
IH
T
IS
HOLDA
T
OV1
Min
Min
Min
Min
T
OV1
Max
Min
Max
Min
T
OH1
T
OH1
TOVTOH— OUTPUT DELAY - The maximum output delay is referred to as the Output Valid Delay (TOV).
The minimum output delay is referred to as the Output Hold (T
OH
).
T
ISTIH
— INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window
during which synchronous input s must be stable for correct processor operation.
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
CLKIN
1.5 V
1.5 V
1.5 V
BOFF
T
IS
T
IH
T
IH
T
IS
1.5 V
1.5 V
1.5 V
80960HA/HD/HT
Advance Information Datasheet 41
Figure 17. TCK Waveform
Figure 18. Input Setup and Hold Waveforms for T
BSIS1
and T
BSIH1
2.0 V
1.5 V
0.8 V
T
BSCF
T
BSCH
T
BSCL
T
BSC
T
BSCR
TCLK
Inputs:
TMS
1.5 V1.5 V1.5 V
TDI
1.5 V
1.5 V
Valid
T
BSIS1
T
BSIH1
80960HA/HD/HT
42 Advance Information Datasheet
Figure 19. Output Delay and Output Float for T
BSOV1
and T
BSOF1
Figure 20. Output Delay and Output Float Waveform for T
BSOV2
and T
BSOF2
Figure 21. Input Setup and Hold Waveform for T
BSIS2
and T
BSIH2
TCK
1.5 V
1.5 V
1.5 V
1.5 V
T
BSOV1
TDO
Valid
T
BSOF1
TCK
1.5 V
1.5 V
1.5 V
1.5 V
T
BSOV2
Non-Test
Valid
T
BSOF2
Outputs
TCK
Non-Test
1.5 V
1.5 V
1.5 V
1.5 V
1.5 V
Valid
T
BSIS2
T
BSIH2
Inputs
80960HA/HD/HT
Advance Information Datasheet 43
Figure 22. Rise and Fall Time Derating at 85°C and Minimum V
CC
Figure 23. ICCActive (Power Supply) vs. Frequency
50pF 100pF 150pF
Time (ns)
CL(pF)
5
4
3
2
1
2.0 to 0.8 V
0.8 to 2.0 V
0
I
CC
Active (Power Supply) (mA)
CLKIN Frequency (MHz)
200
1800 1600 1400 1200 1000
800 600 400
10 20 30 40
HA
HT
HD
0
80960HA/HD/HT
44 Advance Information Datasheet
Figure 24. I
CC
Active (Thermal) vs. Frequency
Figure 25. Output Delay or Hold vs. Load Capacitance
I
CC
Active (Thermal) (mA)
CLKIN Frequency (MHz)
200
1400
1200
1000
800
600
400
10 20 30 40
HA
HT
HD
50 100 150
C
L
(pF)
nom + 10
nom + 5
nom
Output Valid Delays (ns) @ 1.5 V
5.5 V Input Signals
3.3 V Input Signals
80960HA/HD/HT
Advance Information Datasheet 45
Figure 26. Output Delay vs. Temperature
Figure 27. Output Hold Times vs. Temperature
Figure 28. Output Delay vs. V
CC
nom - 0.0
nom - 0.4
nom - 0.5
Output Valid Delays (ns) @ 1.5 V
nom - 0.3
nom - 0.2
nom - 0.1
Processor Case Temperature (°C)
85°C0°C
nom + 0.5
nom + 0.1
nom + 0
Output Hold Times (ns) @ 1.5 V
nom + 0.2
nom + 0.3
nom + 0.4
Processor Case Temperature (°C)
85°C0°C
nom + 0.5
-nom + 0.3
-nom + 0.5
Output Valid or Hold Delays (ns) @ 1.5 V
-nom + 0.1
nom + 0.1
nom + 0.3
VCC(volts)
3.15 3.45
80960HA/HD/HT
46 Advance Information Datasheet
5.0 Bus Waveforms
Figure 29. Cold Reset Waveform
CLKIN
CT3:0, ADS
,
W/R
,DT/R,
D31:0,
STEST
RESET
V
CC,
VCC5,
LOCK,WAIT,
DEN
, BLAST
BREQ, FAIL,
DP3:0
Invalid
Valid
∼∼∼∼∼
Inputs
Tsetup
1CLKIN
Thold
1CLKIN
∼∼∼
∼∼∼
∼∼∼
∼∼∼
∼∼∼
∼∼∼
∼∼∼
A31:2, SUP
D/C, BE3:0
BABA
~
~
ONCE
NOTE: V
CC
stable: As specified in Table20“V
DIFF
Specification for Dual Power Supply Requirements (3.3 V, 5 V)” on page 30
RESET high to First Bus Activity,
HA=67, HD=34, HT=23
CLKIN periods
CLKIN and V
CC
Stable to RESET high,
minimum 10,000 CLKIN periods
for PLL stabilization.
BSTALL
80960HA/HD/HT
Advance Information Datasheet 47
Figure 30. Warm Reset Waveform
Maximum RESET Low to RESET State
16 CLKIN Periods
1CLKIN
∼∼∼
CLKIN
ADS
,
DT/R
SUP,
D31:0,
STEST
RESET
LOCK,WAIT,
DEN
,BLAST,
A31:2,
D/C
,BE3:0
DP3:0
Valid
Thold
Tsetup
1CLKIN
∼∼∼
W/R,BREQ,FAIL,
BSTALL
Minimum RESET Low Time
16 CLKIN Periods
RESET High to First Bus Activity,
HA=67, HD=34, HT=23
CLKIN Periods
80960HA/HD/HT
48 Advance Information Datasheet
Figure 31. Entering ONCE
Mode
CLKIN
ADS
,BE3:0, A31:2,
RESET
ONCE
CLKIN and V
CC
Stable and RESET low and ONCE low to
RESET high, minimum
10,000 CLKIN Periods.
D31:0, LOCK,WAIT,
BLAST
,W/R,D/C,DEN,
DT/R
,HOLDA,
CT3:0, BSTALL, DP3:0,
PCHK
BLAST,FAIL,SUP,BREQ,
V
CC,
VCC5
∼∼∼
ONCEmodeisenteredwithin1CLKIN
period after ONCE becomes low while
RESET is low.
∼∼∼
CLKIN may neither float nor remain idle.
It must continue to run.
NOTES:
1. ONCE mode may be entered prior to the rising edge of RESET
: ONCE input is not latched until the rising
edge of RESET
.
2. The ONCE
input may be removed after the processor enters ONCE mode.
80960HA/HD/HT
Advance Information Datasheet 49
Figure 32. Non-Burst, Non-Pipelined Requests without Wait States
In
ADS
A31:2, SUP,
D/C
,
LOCK, CT3:0
W/R
BLAST
DT/R
DEN
WAIT
D31:0,
CLKIN
AD
AD
AD
In
Valid
Valid
Valid
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
OFF
0
0
0000
X
xx
X x
Enabled
1
0
00
0
00000
0
00
Disabled
0
0
00000
Out
Function
Bit
Value
BE3:0,
DP3:0
PCHK
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
80960HA/HD/HT
50 Advance Information Datasheet
Figure 33. Non-Burst, Non-Pipelined Read Request with Wait States
ADS
A31:2, BE3:0
W/R
BLAST
DT/R
DEN
WAIT
D31:0,
CLKIN
A
3
21
D1
In
Valid
Valid
A
DP3:0
PCHK
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
OFF
0
1
0001
X xx
X
x
Enabled
1
X
xx
X
xxxxx
X
xx
Disabled
0
3
00011
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
PMCON
D/C
,SUP,
LOCK,CT3:0
80960HA/HD/HT
Advance Information Datasheet 51
Figure 34. Non-Burst, Non-Pipelined Write Request with Wait States
ADS
A31:2,
W/R
BLAST
DT/R
DEN
WAIT
D31:0,
CLKIN
A3 21 D1
Out
A
Valid
Valid
BE3:0
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
OFF
0
1
0001
X
xx
X
x
Enabled
1
X
xxxxx
3
00011
X
xx
Disabled
0
X
xxxxx
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
D/C,SUP,
LOCK,CT3:0
80960HA/HD/HT
52 Advance Information Datasheet
Figure 35. Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus
In0
ADS
A31:4, SUP ,
CT3:0,D/C,
BE3:0
,LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
AD
DDDA
In3In2In1
Valid
00 01 10 11
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
0
0000
32-Bit
10
XxEnabled
1
X
xx
X
xxxxx
0
00
Disabled
0
0
00000
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
80960HA/HD/HT
Advance Information Datasheet 53
Figure 36. Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
BE3:0
,LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
A21 D 1D1 D1D1 A
In1
In2
In3
In0
Valid
00 1101 10
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
1
0001
32-Bit
10
X x
Enabled
1
X
xx
X
xxxxx
1
01
Disabled
0
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
80960HA/HD/HT
54 Advance Information Datasheet
Figure 37. Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C
,
BE3:0
,LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
AD
DDDA
00 01 10 11
Out0
Out3
Out2
DP3:0
PCHK
Out1
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
0
0000
32-Bit
10
XxEnabled
1
0
00
0
00000
X
xx
Disabled
0
X
xxxxx
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
Valid
80960HA/HD/HT
Advance Information Datasheet 55
Figure 38. Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus
ADS
A31:4, SUP ,
CT3:0, D/C
,
BE3:0
,LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
A21 D 1 D 1 D 1D1 A
Out0
Valid
00 1101 10
Out1
Out2
Out3
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF 32-bit
0
1
0001
10
X
x
Enabled
1
1
01
2
00010
X
xx
Disabled
0
X
xxxxx
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
80960HA/HD/HT
56 Advance Information Datasheet
Figure 39. Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus
ADS
SUP,CT3:0,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
A21 D 1 D 1 D 1D1 A
Valid
A3:2 = 00 or 10 A3:2 = 01 or 11
D15:0
A1=0
D15:0
A1=1
D15:0
A1=0
D15:0
A1=1
D/C
,LOCK,
A31:4, BE3
/BHE,
BE1/A1
BE0/BLE
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
1
0001
16-Bit
XxEnabled
1
X
xx
X
xxxxx
1
01
Disabled
0
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
01
PMCON
80960HA/HD/HT
Advance Information Datasheet 57
Figure 40. Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus
ADS
SUP,CT3:0,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
A21 D 1D1 D1D1 A
Valid
A3:2 = 00, 01, 10 or 11
D7:0
Byte 0
D7:0
Byte 1
D7:0
Byte 2
D7:0
Byte 3
D/C,LOCK,
A31:4
BE1
/A1,
A1:0 = 00 A1:0= 01 A1:0 = 10 A1:0 =11
BE0/A0
DP3:0
PCHK
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
OFF
0
1
0001
8-Bit
X
x
Enabled
1
X
xx
X
xxxxx
1
01
Disabled
0
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
00
PMCON
80960HA/HD/HT
58 Advance Information Datasheet
Figure 41. Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
LOCK
BLAST
WAIT
D31:0,
CLKIN
IN D
IN
D'
IN
D''
IN
D'''
IN
D''''
A
A' D
A'' D'
A''' D''
A'''' D'''
D''''
Valid Valid Valid Valid Valid Invalid
DT/R
DEN
A3:2
BE3:0
Valid Valid Valid Valid Valid Invalid
W/R
DP3:0
PCHK
1. Non-pipelined request concludes, pipelined reads begin.
2. Pipelined reads conclude, non-pipelined requests begin.
1
2
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
ON
1
X
xxxx
32-Bit
X x
Enabled
1
X
xx
X
xxxxx
X
xx
X
x
0
00000
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
10
Invalid
PMCON
80960HA/HD/HT
Advance Information Datasheet 59
Figure 42. Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C
,
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
BE3:0
A1
A' D
1
D
'
IN D'
Valid Valid Invalid
IN
D
LOCK
Valid Valid Invalid
DP3:0
1. Non-pipelined request concludes, pipelined reads begin
2. Pipelined reads conclude, non-pipelined requests begin
PCHK
2
1
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Disabled
0
ON
1
X
xxxx
32-Bit
X x
Enabled
1
X
xx
X
xxxxx
X
xx
X x
1
00001
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
10
Invalid
PMCON
80960HA/HD/HT
60 Advance Information Datasheet
Figure 43. Burst, Pipelined Read Request without Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
BE3:0
,LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0,
CLKIN
ADDDA' D'D'
Valid Valid
In-
ValidValid01 10 1100
IN
D
IN
D
IN
D
IN
D
IN D
IN
D
Valid
D
In-
Valid
DP3:0
PCHK
1
2
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
ON
1
X
xxxx
32-Bit
X
x
Enabled
1
X
xx
X
xxxxx
0
00
X x
0
00000
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
10
PMCON
1. Non-pipelined request concludes, pipelined reads begin
2. Pipelined reads conclude, non-pipelined requests begin
80960HA/HD/HT
Advance Information Datasheet 61
Figure 44. Burst, Pipelined Read Request with Wait States, 32-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
BE3:0
,LOCK
W/R
A3:2
D31:0,
WAIT
BLAST
DT/R
DEN
CLKIN
IN
D
IN
D
IN
D
IN
D
IN
D'
A
21D 1D1D1
A'
21
Valid
D
D'
Valid
In-
valid
In-
valid
00 01 10 11 Valid
In-
valid
DP3:0
PCHK
1. Non-pipelined request concludes, pipelined reads begin.
2. Pipelined reads conclude, non-pipelined requests begin.
2
1
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
ON
1
X
xxxx
32-Bit
X x
Enabled
1
X
xx
X
xxxxx
1
01
X
x
2
00010
Function
Bit
Value
External
Ready
Control
Pipe­Lining
Parity Enable
N
RAD
10
PMCON
80960HA/HD/HT
62 Advance Information Datasheet
Figure 45. Burst, Pipelined Read Request with Wait States, 8-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
LOCK
W/R
A3:2
BE1
/A1,
WAIT
BLAST
DT/R
DEN
CLKIN
D7:0
Byte 0
D7:0
Byte 1
D7:0
Byte 2
D7:0
Byte 3
D7:0
D'
A21 D 1D1 D1
A'
21
D
D'
In-
valid
Valid
In-
valid
BE0/A0
D31:0,
A3:2 = 00, 01, 10, or 11
Valid
In-
valid
A1:0 = 00 A1:0 = 01 A1:0 = 10 A1:0 = 11
Valid
Valid
In-
valid
DP3:0
1. Non-pipelined request concludes, pipelined reads begin
2. Pipelined reads conclude, non-pipelined requests begin
PCHK
2
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
ON
1
X
xxxx
8-Bit
X x
Enabled
1
X
xx
X
xxxxx
1
01
X
x
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining Parity Enable
N
RAD
00
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
PMCON
1
80960HA/HD/HT
Advance Information Datasheet 63
Figure 46. Burst, Pipelined Read Request with Wait States, 16-Bit Bus
ADS
A31:4, SUP,
CT3:0, D/C,
BE0
/BLC,
W/R
A3:2
BE1
/A1
WAIT
BLAST
DT/R
DEN
CLKIN
D15:0
A1=0
D15:0
A1=1
D15:0
A1=0
D15:0 A1=1
D15:0
D'
A21 D 1D1 D1
A'
21
Valid
D
D'
Valid
In-
valid
In-
valid
A3:2 = 00 or 10 A3:2 = 01 or 11 Valid
In-
valid
Valid
In-
valid
BE3/BHE,
D31:0,
LOCK
DP3:0
PCHK
2
1
Burst
Bus
Width
Odd
Parity
N
XDANWDDNWAD
N
RDD
29
28 2124 23-22 20 12-819-16 15-14 7-6 4-0
Enabled
1
ON
1
X
xxxx
16-Bit
X
x
Enabled
1
X
xx
X
xxxxx
1
01
X
x
2
00010
Function
Bit
Value
External
Ready
Control
Pipe-
Lining
Parity Enable
N
RAD
NOTE: Bits 31-30, 27-25, 13, and 5 are reserved.
01
PMCON
1. Non-pipelined request concludes, pipelined reads begin
2. Pipelined reads conclude, non-pipelined requests begin
80960HA/HD/HT
64 Advance Information Datasheet
Figure 47. Using External READY
CLKIN
ADS
A31:4, SUP,
DT/R
DEN
READY
W/R
CT3:0, D/C,
BLAST
BTERM
A3:2
WAIT
D31:0,
BE3:0,LOCK
D0 D1 D2 D3 D0 D1 D2 D3
00 01 10 11 00 01 10 11
ValidValid
Quad-Word Read Request
N
RAD
=0,N
RDD
=0,N
XDA
=0
Ready Enabled
Quad-Word Write Request
N
WAD
=1,N
WDD
=0,N
WDA
=0
Ready Enabled
DP3:0
PCHK
A1D D D D 1A 2 D1 D1 D1 D
NOTE: Pipelining must be disabled to use READY
.
80960HA/HD/HT
Advance Information Datasheet 65
Figure 48. Terminating a Burst with BTERM
CLKIN
ADS
A31:4, SUP,
DT/R
DEN
READY
W/R
CT3:0, D/C,
BLAST
BTERM
A3:2
WAIT
D31:0,
BE3:0,LOCK
D0
D1 D2 D3
Valid
Quad-Word Read Request
N
RAD
=0,N
RDD
=0,N
RDA
=0
Ready Enabled
00 01 10 11
Note:READYadds memory access time to data transfers, whether or not the bus access is a burst access. BTERM
interrupts a bus access, whether or not
the bus access has more data transfers pending. Either the READY
signal or
the BTERM
signal terminates a bus access when the signal is asserted during
the last (or only) data transfer of the bus access.
See Note
DP3:0
PCHK
D1 AD1 DAA1D1
80960HA/HD/HT
66 Advance Information Datasheet
The processor can stall (BSTALL asserted) even with an empty bus queue (BREQ deasserted). Depending on the instruction stream and memory wait states, the two signals can be separated by several CLKIN cycles.
Bus arbitration logic that logically “ANDs” BSTALL and BREQ will not correctly grant the bus to the processor in all stall cases, potentially degrading processor performance.
Do not logically “AND” BSTALL and BREQ together in arbitration logic. Instead, the simplest bus arbitration should logically “OR” BSTALLand BR EQ to determine the p rocessor’s bus ownership requirements.
More sophisticated arbitration should recognize the priority nature of these two signals. Using a traffic light analogy, BREQ is a “yellow light” warning of a possible processor stall and BSTALL is a “red light” indicating a stall in progress.
Figure 49. BREQ and BSTALL Operation
CLKIN
ADS
BLAST
BREQ
BSTALL
80960HA/HD/HT
Advance Information Datasheet 67
Figure 50. BOFF
Functional Timing. BOFF occurs during a burst or non-burst data cycle.
ADS
BLAST
READY
BOFF
A31:2, SUP,
DP3:0 & D31:0,
BOFF may not
be asserted
BOFF
may not
be asserted
BOFF
may be asserted to suspend request
Begin Request
End Request
SuspendRequest
Non-Burst
CT3:0, D/C,
BE3:0,WAIT,
DEN,DT/R
(WRITES)
Burst
Resume Request
Note:READY/BTERM must be enabled; N
RAD,NRDD,NWAD,NWDD
=0
Valid Valid
CLKIN
PCHK
AD A
May Change
BOFF Mode
Regenerate ADS
80960HA/HD/HT
68 Advance Information Datasheet
Figure 51. HOLD Functional Timing
Word Read Request
N
RAD
=1, N
XDA
=1
Word Read
Request
N
RAD
=0,
N
XDA
=0
Hold State Hold State
CLKIN
ADS
A31:2, SUP ,
CT3:0, D/C,
BE3:0,WAIT,
DEN,DT/R
BLAST
HOLD
HOLDA
ValidValid
LOCK
80960HA/HD/HT
Advance Information Datasheet 69
Figure 52. LOCK
Delays HOLDA Timing
Figure 53. FAIL
Functional Timing
CLKIN
ADS
BLAST
HOLD
HOLDA
LOCK
W/R
RESET
FAIL
257,517 Cycles
30 Cycles
113 Cycles
(Bus Test)
Pass
(Internal Self-Test)
Pass
~
~
~
~
~
~
~
~
Fail
Fail
80960HA:
80960HD:
128,761 Cycles
15 Cycles
94 Cycles
80960HT:
85,840 Cycles
10 Cycles
90 Cycles
80960HA/HD/HT
70 Advance Information Datasheet
Figure 54. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions
04812162024
0123456
One Double-Word
Short-Word Load/Store
Word Load/Store
Double-Word Load/Store
Short Requests (Unaligned)
Short Request (Aligned)
Short Request (Aligned)
Byte, Byte Requests
WordRequest (Aligned)
Trey, Byte, Requests
Short, Short Requests
Byte, Trey, Requests
Byte Offset
Word Offset
One Double-Word Burst (Aligned)
Trey, Byte, Trey, Byte, Requests
Short, Short, Short, Short Requests
Byte, Trey, Byte, Trey, Requests
Word, Word Requests
Request (Aligned)
NOTES:
1. All requests that are less than a word in size and are cacheable will be promoted to a word to be cached. This causes adjacent requests to occur for full words to the same address.
80960HA/HD/HT
Advance Information Datasheet 71
Figure 55. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions (Continued)
04 812162024
0123456
Triple-Word Load/Store
Quad-Word Load/Store
Word, Word, Word Requests
Requests
4Word Requests
Byte Offset
Word Offset
One T hree-Word
Request (Aligned)
Trey, Byte, Trey, Byte,
Trey, Byte Requests
Short, Short, Short Requests
Short, Short, Short, Short
Byte, Trey, Byte, Trey, Byte, Trey Requests
Word, Word, Word Requests
One Four-Word Request (Aligned)
Trey, Byte, Trey, Byte, Trey, Byte Trey, Byte Requests
8 Short Requests
Byte, Trey, Byte, Trey, Byte, Trey, Byte, Trey, Requests
Requests
Word, Word
Word,
4Word
NOTES:
1. All requests that are less than a word in size and are cacheable will be promoted to a word to be cached. This causes adjacent requests to occur for full words to the same address.
80960HA/HD/HT
72 Advance Information Datasheet
Figure 56. A Summary of Aligned and Unaligned Transfers for 16-Bit Bus
04812162024
01234 56
Byte Offset
Word Offset
Double Word
16-Bit Bus
TripleWord
16-Bit Bus
Quad Word
16-Bit Bus
Short
16-Bit Bus
Word
16-Bit Bus
Short
Four Short Burst
(Byte, Short, Byte) *2
(Short) *4
(Byte, Short, Byte)*2
Four Short Burst, TwoShort Burst
(Byte, Short, Byte) *3
(Short) *6
(Byte, Short, Byte) *3
(Two Short Burst) *3
(Two Short Burst) *3
(FourShort Burst)*2
(Byte, Short, Byte) *4
(Short) *8
(Two Short Burst)*4
(Two Short Burst) *4
Short
Byte, Byte
(Byte, Short, Byte) *4
Four Short Burst
Two S hort Bur st
Byte, Short, Byte
(Short)*2
Two Short Burst
Byte, Short, Byte
Byte, Byte
(Two Short Burst)*2
80960HA/HD/HT
Advance Information Datasheet 73
Figure 57. A Summary of Aligned and Unaligned Transfers for 8-Bit Bus
04812162024
01234 56
Byte Offset
Word Offset
Short
8-Bit Bus
Word
8-Bit Bus
TripleWord
8-Bit Bus
DoubleWord
8-Bit Bus
Quad Word
16-Bit Bus
TwoByteBurst
TwoByteBurst
TwoByteBurst
Byte, Byte
Four Byte Burst
Three Byte Burst, Byte
(Two Byte Burst)*2
(FourByte Burst)*3
(TwoByte Burst) *6
(Four Byte Burst)*3
FourByte Burst
(Four Byte Burst) *2
(Three Byte Burst, Byte)*2
(Four Byte Burst) *2
(Two Byte Burst) *4
(FourByte Burst) *2
(Three Byte Burst, Byte)*3
(Byte, Three Byte Burst) *3
(FourByte Burst)*3
(FourByte Burst)*4
(Two Byte Burst) *8
(FourByte Burst)*4
(Four Byte Burst) *4
(Three Byte Burst, Byte)*4
(Byte, Three Byte Burst) *4
Byte, Three Byte Burst
(Byte, Three Byte Burst) *2
80960HA/HD/HT
74 Advance Information Datasheet
Figure 58. Idle Bus Operation
CLKIN
ADS
A31:4, SUP,D/C,
LOCK
W/R
BLAST
DT/R
DEN
A3:2
WAIT
D31:0
READY
,
BTERM
Write Request
N
WAD
=2, N
XDA
=0
Ready Disabled
Idle Bus
(not in Hold Acknowledge state)
Read Request
N
RAD
=2, N
XDA
=0
Ready Disabled
In
Out
Valid
Valid
Valid
Valid
Valid
Valid
PCHK
Valid
Valid
BE3:0,CT3:0
80960HA/HD/HT
Advance Information Datasheet 75
Figure 59. Bus States
Ti = IDLE Th = HOLD Ta =ADDRESS Td = DATA Tb = BOFF’ed Taw= address to data wait
To = ONCE
Ta
Tb
Td
1
Taw
2
Trw
4
Tdw
3
Th
Ti
To
Tdw= data to data wait Tdw= data to address wait
!BOFF and READ and N
rdd
=0
READ and N
rdd
>0or
WRITE and N
wdd
>0
BOFF
WdCNT = 1
!BOFF and
WaCNT = 1
WxCNT=1 and
HOLD
WxCNT > 1
BOFF
!BOFF
HOLD
HOLD
!HOLD
NOTE:
1. When the PMCON for the region has External Ready Control e nabled, wait states are inserted as
long as READY
and BTERM are de-as serted. When Read Pipelining is enabled, the Ta state of the subsequent read access is concurrent with the last data cycle of the access. Because External Ready Control is disabled for Read Pipelining, the address cycle occurs during BLAST
.
2. W
a
CNT is decremented dur ing T
aw
3. WdCNT is decremented during T
dw
4. WxCNT is decremented during T
rw
!HOLD and WxCNT=1 and !REQUEST
!HOLD and WxCNT=1 and REQUEST
!RESET and !HOLD and REQUEST
RESET and
ONCE and RESET
WaCNT > 1
READ and N
rad
>0or
WRITE and N
wad
>0
!BOFF and READ and N
rad
=0or
!BOFF and WRITE and N
wad
=0
!BOFF and READY and !BLAST or
!HOLD and BLAST and REQUESTand N
XDA
=0
WdCNT > 1
KEY:
!BOFF and and N
xda
=0
HOLD and BLAST
!BOFF and !HOLD and
N
xda
=0
BLAST and
and !BLAST or !BOFF and WRITE and N
wdd
= 0 and !BLAST or
N
xda
>0
REQUEST= One or more requests in the bus queue. READ= The current access is a read.
WRITE= The current access is a write.
RESET
BLAST and
BOFF
and !REQUEST
!ONCE
READY!
!BOFF and BTERM and !BLAST or !BOFF and
80960HA/HD/HT
76 Advance Information Datasheet
5.1 80960Hx Boundary Scan Chain
Table 25. 80960Hx Boundary Scan Chain (Sheet 1 of 4)
# BOUNDARY SCAN CELL CELL TYPE COMMENT
DP3 Bidirectional DP2 Bidirectional DP0 Bidirectional DP1 Bidirectional STEST Input FAILBAR Output Enable for FAILBAR, BSTALL and
BREQ
Control
ONCEBAR Input BOFFBAR Input D0 Bidirectional D1 Bidirectional D2 Bidirectional D3 Bidirectional D4 Bidirectional D5 Bidirectional D6 Bidirectional D7 Bidirectional Enable for DP(3:0) and D(31:0) Control D8 Bidirectional D9 Bidirectional D10 Bidirectional D11 Bidirectional D12 Bidirectional D13 Bidirectional D14 Bidirectional D15 Bidirectional D16 Bidirectional D17 Bidirectional D18 Bidirectional D19 Bidirectional D20 Bidirectional
NOTES:
1. Cell#1 connects to TDO and cell #112 connect s to TDI.
2. All outputs are three-state.
3. In output and bidirectional signals, a logical “1” on the enable signal enables the output. A logical “0” three-states the output.
80960HA/HD/HT
Advance Information Datasheet 77
D21 Bidirectional D22 Bidirectional D23 Bidirectional D24 Bidirectional D25 Bidirectional D26 Bidirectional D27 Bidirectional D28 Bidirectional D29 Bidirectional D30 Bidirectional D31 Bidirectional BTERMBAR Input
RDYBAR Input
Appears as READYBAR in BSDL
file. HOLD Input HOLDA Output Enable for HOLDA control Control ADSBAR Output
BE3BAR Output
Appears as BEBAR(3:0) in BSDL
file. BE2BAR Output BE1BAR Output BE0BAR Output BLASTBAR Output DENBAR Output WRRDBAR Output Appears as WRBAR in BSDL file. DTRBAR Output Enable for DTRBAR Control WAITBAR Output BSTALL Output DATAC ODBAR Output Appears as DCBAR in BSDL file. USERSUPBAR Output Appears as SUPBA R in BSDL file. Enable for ADSBAR, BEBAR,
BLASTBAR, DENBAR, WRRDBAR, WAITBAR, DCBAR, SUPBAR and LOCKBAR,
Control
Table 25. 80960Hx Boundary Scan Chain (Sheet 2 of 4)
# BOUNDARY SCAN CELL CELL TYPE COMMENT
NOTES:
1. Cell#1 connects to TDO and cell #112 conn ects to TDI .
2. All outputs are three-state.
3. In output and bidirectional signals, a logical “1” on the enable signal enables the output. A logical “0” three-states the output.
80960HA/HD/HT
78 Advance Information Datasheet
LOCKBAR Output BREQ Output A31 Output A30 Output A29 Output A28 Output A27 Output A26 Output A25 Output A24 Output A23 Output A22 Output A21 Output A20 Output A19 Output A18 Output A17 Output A16 Output Enable for A(31:0) and CT(3:0) Control A15 Output A14 Output A13 Output A12 Output A11 Output A10 Output A9 Output A8 Output A7 Output A6 Output A5 Output A4 Output A3 Output A2 Output NMIBAR Input
Table 25. 80960Hx Boundary Scan Chain (Sheet 3 of 4)
# BOUNDARY SCAN CELL CELL TYPE COMMENT
NOTES:
1. Cell#1 connects to TDO and cell #112 connect s to TDI.
2. All outputs are three-state.
3. In output and bidirectional signals, a logical “1” on the enable signal enables the output. A logical “0” three-states the output.
80960HA/HD/HT
Advance Information Datasheet 79
XINT7BAR Input
Appears as XINTBAR(7:0) in
BSDL file. XINT6BAR Input XINT5BAR Input XINT4BAR Input XINT3BAR Input XINT2BAR Input XINT1BAR Input XINT0BAR Input RESETBAR I nput CLKIN Input CT3 Output Appears as CT(3:0) in BSDL file. CT2 Output CT1 Output CT0 Output
PCHK Output
Appears as PCHKBAR i n BSDL
file.
PCHK enable Control
Table 25. 80960Hx Boundary Scan Chain (Sheet 4 of 4)
# BOUNDARY SCAN CELL CELL TYPE COMMENT
NOTES:
1. Cell#1 connects to TDO and cell #112 conn ects to TDI .
2. All outputs are three-state.
3. In output and bidirectional signals, a logical “1” on the enable signal enables the output. A logical “0” three-states the output.
80960HA/HD/HT
80 Advance Information Datasheet
5.2 Boundary Scan Description Language Example
Boundary-Scan Description Language (BSDL) example 14-2 meets the de facto standard means of describing essential features of ANSI/IEEE 1149.1-1993 compliant d evices.
Example 1. Boundary-Scan Description Language (BSDL) for PGA PackageExample (Sheet 1 of 8)
-- Copyright Intel Corp. 1995
- - ***************************************************************************
- - Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.
- - ***************************************************************************
- - Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto standard means of describing essential features of ANSI/IEEE 1149.1-1990 compliant devices. This language is under consideration by the IEEE for formal inclusion within a supplement to the 1149.1-1990 standard. The generation of the supplement entails an extensive IEEE review and a formal acceptance balloting procedure which may change the resultant form of the language. Be aware that this process may extend well into 1993, and at this time the IEEE does not endorse or hold an opinion on the language.
- - ***************************************************************************
--
-- i960(R) Processor BSDL Model
80960HA/HD/HT
Advance Information Datasheet 81
-- Project code HA
-- File **NOT** verified electrically
-- ------------------------------------------------
-- Rev 0.7 18 Dec 1995 Updated for A-1 stepping.
-- Rev 0.6 08 Dec 1994
-- Rev 0.5 21 Nov 1994
-- Rev 0.4 31 Oct 1994
-- Rev 0.3 26 July 1994
-- Rev 0.2 22 June 1994
-- Rev 0.1 16 Mar 1994
-- Rev 0.0 30 Aug 1993 entity Ha_Processor is
generic(PHYSICAL_PIN_MAP : string:= “PGA”);
port (A : out bit_vector(2 to 31);
ADSBAR : out bit; BEBAR : out bit_vector(0 to 3); BLASTBAR : out bit; BOFFBAR : in bit; BREQ : out bit; BSTALL : out bit; BTERMBAR : in bit; CT : out bit_vector(0 to 3); CLKIN : in bit; D : inout bit_vector(0 to 31); DENBAR : out bit; DP : inout bit_vector(0 to 3); DTRBAR : out bit; DCBAR : out bit; FAILBAR : out bit; HOLD : in bit; HOLDA : out bit; LOCKBAR : out bit; NMIBAR : in bit; ONCEBAR : in bit; PCHKBAR : out bit; READYBAR : in bit; RESETBAR : in bit; STEST : in bit;
Example 1. Boundary-Scan Description Language (BSDL) for PGA PackageExample (Sheet 2 of 8)
80960HA/HD/HT
82 Advance Information Datasheet
SUPBAR : out bit; TCK : in bit; TDI : in bit; TDO : out bit; TMS : in bit; TRST : in bit; WAITBAR : out bit; WRBAR : out bit; XINTBAR : in bit_vector(0 to 7); FIVEVREF : linkage bit; VCCPLL : linkage bit; VOLTDET : out bit; VCC1 : linkage bit_vector(0 to 23); VCC2 : linkage bit_vector(0 to 20); VSS1 : linkage bit_vector(0 to 25); VSS2 : linkage bit_vector(0 to 22); NC : linkage bit_vector(0 to 4)
);
use STD_1149_1_1990.all; use i960ha_a.all;
attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP; constant PGA:PIN_MAP_STRING :=
“A : (D16, D17, E16, E17, F17, G16, G17, H17, J17,”& “ K17, L17, L16, M17, N17, N16, P17, Q17, P16,”& “ P15, Q16, R17, R16, Q15, S17, R15, S16, Q14, ”& “ R14, Q13, S15), “ADSBAR : R06,”& “BEBAR : (R09, S07, S06, S05),”& “BLASTBAR : S08,”& “BOFFBAR : B01,”& “BREQ : R13,”& “BSTALL : R12,”& “BTERMBAR : R04,”& “CT : (A11, A12, A13, A14),”& “CLKIN : C13,”&
Example 1. Boundary-Scan Description Language (BSDL) for PGA PackageExample (Sheet 3 of 8)
80960HA/HD/HT
Advance Information Datasheet 83
“D : (E03, C02, D02, C01, E02, D01, F02, E01, F01,”& “ G01, H02, H01, J01, K01, L02, L01, M01, N01,”& “ N02, P01, P02, Q01, P03, Q02, R01, S01, Q03,”& “ R02, Q04, S02, Q05, R03),”& “DENBAR : S09,”& “DP : (A03, B03, A04, B04),”& “DTRBAR : S11,”& “DCBAR : S13,”& “FAILBAR : A02,”& “HOLD : R05,”& “HOLDA : S04,”& “LOCKBAR : S14,”& “NMIBAR : D15,”& “ONCEBAR : C03,”& “PCHKBAR : B08,”& “READYBAR : S03,”& “RESETBAR : A16,”& “STEST : B02,”& “SUPBAR : Q12,”& “TCK : B05,”& “TDI : A07,”& “TDO : A08,”& “TMS : B06,”& “TRST : A06,”& “WAITBAR : S12,”& “WRBAR : S10,”& “ XINTBAR : (B15, A15, A17, B16, C15, B17, C16, C17),”& “FIVEVREF : C05,”& “VOLTDET : A05,”& “VCCPLL : B10,”& “ VCC1 : (M02, K02, J02, G02, N03, F03, C06, B07, B09, B11,”& “ B12, C14, E15, F16, H16, J16, K16, M16, N15, Q06,”& “ R07, R08, R10, R11),”& “ VSS1 : (G03, H03, J03, K03, L03, M03, C07, C08, C09, C10,”& “ C11, C12, Q07, Q08, Q09, Q10, Q11, F15, G15, H15,”& “ J15, K15, L15, M15, A01, C04),”& “NC : (A09, A10, B13, B14, D03)”;
Example 1. Boundary-Scan Description Language (BSDL) for PGA PackageExample (Sheet 4 of 8)
80960HA/HD/HT
84 Advance Information Datasheet
attribute Tap_Scan_In of TDI : signal is true; attribute Tap_Scan_Mode of TMS : signal is true; attribute Tap_Scan_Out of TDO : signal is true; attribute Tap_Scan_Reset of TRST : signal is true; attribute Tap_Scan_Clock of TCK : signal is (66.0e6, BOTH);
attribute Instruction_Length of Ha_Processor: entity is 4;
attribute Instruction_Opcode of Ha_Processor: entity is
“BYPASS (1111),” & “EXTEST (0000),” & “SAMPLE (0001),” & “IDCODE (0010),” & “RUBIST (0111),” & “CLAMP (0100),” & “HIGHZ (1000),” & “Reserved (1011, 1100)”;
attribute Instruction_Capture of Ha_Processor: entity is “0001”;
attribute Instruction_Private of Ha_Processor: entity is “Reserved” ;
attribute Idcode_Register of Ha_Processor: entity is
“0010” & --version, “1000100001000000” & --part number “00000001001” & --manufacturers identity “1”; --required by the standard
attribute Register_Access of Ha_Processor: entity is
“Runbist[32] (RUBIST),” & “Bypass (CLAMP, HIGHZ)”;
{***************************************************************************} { The first cell, cell 0, is closest to TDO } { BC_1:Control, Output3 CBSC_1:Bidir BC_4: Input, Clock } {***************************************************************************}
Example 1. Boundary-Scan Description Language (BSDL) for PGA PackageExample (Sheet 5 of 8)
80960HA/HD/HT
Advance Information Datasheet 85
attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”; attribute Boundary_Length of Ha_Processor: entity is 112; attribute Boundary_Register of Ha_Processor: entity is
“0 (CBSC_1, DP(3), bidir, X, 17, 1, Z),” & “1 (CBSC_1, DP(2), bidir, X, 17, 1, Z),” & “2 (CBSC_1, DP(0), bidir, X, 17, 1, Z),” & “3 (CBSC_1, DP(1), bidir, X, 17, 1, Z),” & “4 (BC_4, STEST, input, X),” & “5 (BC_1, FAILBAR, output3, X, 6, 1, Z),” & “6 (BC_1, *, control, 1),” & “7 (BC_4, ONCEBAR, input, X),” & “8 (BC_4, BOFFBAR, input, X),” & “9 (CBSC_1, D(0), bidir, X, 17, 1, Z),” & “10 (CBSC_1, D(1), bidir, X, 17, 1, Z),” & “11 (CBSC_1, D(2), bidir, X, 17, 1, Z),” & “12 (CBSC_1, D(3), bidir, X, 17, 1, Z),” & “13 (CBSC_1, D(4), bidir, X, 17, 1, Z),” & “14 (CBSC_1, D(5), bidir, X, 17, 1, Z),” & “15 (CBSC_1, D(6), bidir, X, 17, 1, Z),” & “16 (CBSC_1, D(7), bidir, X, 17, 1, Z),” & “17 (BC_1, *, control, 1),” & “18 (CBSC_1, D(8), bidir, X, 17, 1, Z),” & “19 (CBSC_1, D(9), bidir, X, 17, 1, Z),” & “20 (CBSC_1, D(10), bidir, X, 17, 1, Z),” & “21 (CBSC_1, D(11), bidir, X, 17, 1, Z),” & “22 (CBSC_1, D(12), bidir, X, 17, 1, Z),” & “23 (CBSC_1, D(13), bidir, X, 17, 1, Z),” & “24 (CBSC_1, D(14), bidir, X, 17, 1, Z),” & “25 (CBSC_1, D(15), bidir, X, 17, 1, Z),” & “26 (CBSC_1, D(16), bidir, X, 17, 1, Z),” & “27 (CBSC_1, D(17), bidir, X, 17, 1, Z),” & “28 (CBSC_1, D(18), bidir, X, 17, 1, Z),” & “29 (CBSC_1, D(19), bidir, X, 17, 1, Z),” & “30 (CBSC_1, D(20), bidir, X, 17, 1, Z),” & “31 (CBSC_1, D(21), bidir, X, 17, 1, Z),” & “32 (CBSC_1, D(22), bidir, X, 17, 1, Z),” & “33 (CBSC_1, D(23), bidir, X, 17, 1, Z),” & “34 (CBSC_1, D(24), bidir, X, 17, 1, Z),” &
Example 1. Boundary-Scan Description Language (BSDL) for PGA PackageExample (Sheet 6 of 8)
80960HA/HD/HT
86 Advance Information Datasheet
“35 (CBSC_1, D(25), bidir, X, 17, 1, Z),” & “36 (CBSC_1, D(26), bidir, X, 17, 1, Z),” & “37 (CBSC_1, D(27), bidir, X, 17, 1, Z),” & “38 (CBSC_1, D(28), bidir, X, 17, 1, Z),” & “39 (CBSC_1, D(29), bidir, X, 17, 1, Z),” & “40 (CBSC_1, D(30), bidir, X, 17, 1, Z),” & “41 (CBSC_1, D(31), bidir, X, 17, 1, Z),” & “42 (BC_4, BTERMBAR, input, X),” & “43 (BC_4, READYBAR, input, X),” & “44 (BC_4, HOLD, input, X),” & “45 (BC_1, HOLDA, output3, X, 46, 1, Z),” & “46 (BC_1, *, control, 1),” & “47 (BC_1, ADSBAR, output3, X, 61, 1, Z),” & “48 (BC_1, BEBAR(3), output3, X, 61, 1, Z),” & “49 (BC_1, BEBAR(2), output3, X, 61, 1, Z),” & “50 (BC_1, BEBAR(1), output3, X, 61, 1, Z),” & “51 (BC_1, BEBAR(0), output3, X, 61, 1, Z),” & “52 (BC_1, BLASTBAR, output3, X, 61, 1, Z),” & “53 (BC_1, DENBAR, output3, X, 61, 1, Z),” & “54 (BC_1, WRBAR, output3, X, 61, 1, Z),” & “55 (BC_1, DTRBAR, output3, X, 56, 1, Z),” & “56 (BC_1, *, control, 1),” & “57 (BC_1, WAITBAR, output3, X, 61, 1, Z),” & “58 (BC_1, BSTALL, output3, X, 6, 1, Z),” & “59 (BC_1, DCBAR, output3, X, 61, 1, Z),” & “60 (BC_1, SUPBAR, output3, X, 61, 1, Z),” & “61 (BC_1, *, control, 1),” & “62 (BC_1, LOCKBAR, output3, X, 61, 1, Z),” & “63 (BC_1, BREQ, output3, X, 6, 1, Z),” & “64 (BC_1, A(31), output3, X, 80, 1, Z),” & “65 (BC_1, A(30), output3, X, 80, 1, Z),” & “66 (BC_1, A(29), output3, X, 80, 1, Z),” & “67 (BC_1, A(28), output3, X, 80, 1, Z),” & “68 (BC_1, A(27), output3, X, 80, 1, Z),” & “69 (BC_1, A(26), output3, X, 80, 1, Z),” & “70 (BC_1, A(25), output3, X, 80, 1, Z),” & “71 (BC_1, A(24), output3, X, 80, 1, Z),” & “72 (BC_1, A(23), output3, X, 80, 1, Z),” & “73 (BC_1, A(22), output3, X, 80, 1, Z),” &
Example 1. Boundary-Scan Description Language (BSDL) for PGA PackageExample (Sheet 7 of 8)
80960HA/HD/HT
Advance Information Datasheet 87
“74 (BC_1, A(21), output3, X, 80, 1, Z),” & “75 (BC_1, A(20), output3, X, 80, 1, Z),” & “76 (BC_1, A(19), output3, X, 80, 1, Z),” & “77 (BC_1, A(18), output3, X, 80, 1, Z),” & “78 (BC_1, A(17), output3, X, 80, 1, Z),” & “79 (BC_1, A(16), output3, X, 80, 1, Z),” & “80 (BC_1, *, control, 1),” & “81 (BC_1, A(15), output3, X, 80, 1, Z),” & “82 (BC_1, A(14), output3, X, 80, 1, Z),” & “83 (BC_1, A(13), output3, X, 80, 1, Z),” & “84 (BC_1, A(12), output3, X, 80, 1, Z),” & “85 (BC_1, A(11), output3, X, 80, 1, Z),” & “86 (BC_1, A(10), output3, X, 80, 1, Z),” & “87 (BC_1, A(9), output3, X, 80, 1, Z),” & “88 (BC_1, A(8), output3, X, 80, 1, Z),” & “89 (BC_1, A(7), output3, X, 80, 1, Z),” & “90 (BC_1, A(6), output3, X, 80, 1, Z),” & “91 (BC_1, A(5), output3, X, 80, 1, Z),” & “92 (BC_1, A(4), output3, X, 80, 1, Z),” & “93 (BC_1, A(3), output3, X, 80, 1, Z),” & “94 (BC_1, A(2), output3, X, 80, 1, Z),” & “95 (BC_4, NMIBAR, input, X),” & “96 (BC_4, XINTBAR(7), input, X),” & “97 (BC_4, XINTBAR(6), input, X),” & “98 (BC_4, XINTBAR(5), input, X),” & “99 (BC_4, XINTBAR(4), input, X),” & “100(BC_4, XINTBAR(3), input, X),” & “101(BC_4, XINTBAR(2), input, X),” & “102(BC_4, XINTBAR(1), input, X),” & “103(BC_4, XINTBAR(0), input, X),” & “104(BC_4, RESETBAR, input, X),” & “105(BC_4, CLKIN, input, X),” & “106(BC_1, CT(3), output3, X, 80, 1, Z),” & “107(BC_1, CT(2), output3, X, 80, 1, Z),” & “108(BC_1, CT(1), output3, X, 80, 1, Z),” & “109(BC_1, CT(0), output3, X, 80, 1, Z),” & “110(BC_1, PCHKBAR, output3, X, 111, 1, Z),” & “111(BC_1, *, control, 1)”;
end Ha_Processor;
Example 1. Boundary-Scan Description Language (BSDL) for PGA PackageExample (Sheet 8 of 8)
80960HA/HD/HT
88 Advance Information Datasheet
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 PackageExample (Sheet 1 of 8)
-- Copyright Intel Corporation 1995, 1996
-- *****************************************************************************
-- Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.
-- *****************************************************************************
-- Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto
-- standard means of describing essential features of ANSI/IEEE 1149.1-1990 compliant devices. This language is under consideration by the IEEE for formal inclusion within a supplement to the 1149.1-1990 standard. The generation of the supplement entails an extensive IEEE review and a formal acceptance balloting procedure which may change the resultant form of the language. Be aware that this process may extend well into 1993, and at this time the IEEE does not endorse or hold an opinion on the language.
-- i960(R) Processor BSDL Model
-- Project code HA
-- File **NOT** verified electrically
-- -----------------------------------------------
-- Rev 0.8 4 Apr 1996 Changed for PQ2 Package
-- Rev 0.7 18 Dec 1995 Updated for A-1 stepping.
-- Rev 0.6 08 Dec 1994
-- Rev 0.5 21 Nov 1994
-- Rev 0.4 31 Oct 1994
-- Rev 0.3 26 July 1994
-- Rev 0.2 22 June 1994
-- Rev 0.1 16 Mar 1994
-- Rev 0.0 30 Aug 1993
80960HA/HD/HT
Advance Information Datasheet 89
entity Ha_Processor is
generic(PHYSICAL_PIN_MAP : string:= “PQ2”); port (A : out bit_vector(2 to 31);
ADSBAR : out bit; BEBAR : out bit_vector(0 to 3); BLASTBAR : out bit; BOFFBAR : in bit; BREQ : out bit; BSTALL : out bit; BTERMBAR : in bit; CT : out bit_vector(0 to 3); CLKIN : in bit; D : inout bit_vector(0 to 31); DENBAR : out bit; DP : inout bit_vector(0 to 3); DTRBAR : out bit; DCBAR : out bit; FAILBAR : out bit; HOLD : in bit; HOLDA : out bit; LOCKBAR : out bit; NMIBAR : in bit; ONCEBAR : in bit; PCHKBAR : out bit; READYBAR : in bit; RESETBAR : in bit; STEST : in bit; SUPBAR : out bit; TCK : in bit; TDI : in bit; TDO : out bit; TMS : in bit; TRST : in bit; WAITBAR : out bit; WRBAR : out bit; XINTBAR : in bit_vector(0 to 7); FIVEVREF : linkage bit; VCCPLL : linkage bit;
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 PackageExample (Sheet 2 of 8)
80960HA/HD/HT
90 Advance Information Datasheet
VCC1 : linkage bit_vector(0 to 23); VCC2 : linkage bit_vector(0 to 23); VSS1 : linkage bit_vector(0 to 23); VSS2 : linkage bit_vector(0 to 23)
);
use STD_1149_1_1990.all; use i960ha_a.all;
attribute PIN_MAP of Ha_Processor : entity is PHYSICAL_PIN_MAP;
constant PQ2:PIN_MAP_STRING :=
“A : (151, 150, 147, 146, 145, 144, 141, 140, 139, 138,”& “ 135, 134, 133, 132, 127, 126, 125, 124, 121, 120,”& “ 119, 118, 113, 112, 111, 110, 107, 106, 105, 104),”& “ADSBAR : 77,”& “BEBAR : (83, 82, 79, 78),”& “BLASTBAR : 84,”& “BOFFBAR : 10,”& “BREQ : 100,”& “BSTALL : 91,”& “BTERMBAR : 67,”& “CT : (183, 182, 181, 180),”& “CLKIN : 175,”& “D : (12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 28, 29,”& “ 34, 35, 36, 37, 39, 40, 41, 42, 45, 50, 51, 52,”& “ 54, 55, 56, 57, 61, 62, 63, 64),”& “DENBAR : 85,”& “DP : (206, 207, 203, 202),”& “DTRBAR : 89,”& “DCBAR : 96,”& “FAILBAR : 5,”& “HOLD : 69,”& “HOLDA : 72,”& “LOCKBAR : 99,”& “NMIBAR : 159,”&
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 PackageExample (Sheet 3 of 8)
80960HA/HD/HT
Advance Information Datasheet 91
“ONCEBAR : 6,”& “PCHKBAR : 189,”& “READYBAR : 68,”& “RESETBAR : 174,”& “STEST : 208,”& “SUPBAR : 97,”& “TCK : 194,”& “TDI : 191,”& “TDO : 188,”& “TMS : 192,”& “TRST : 193,”& “WAITBAR : 90,”& “WRBAR : 88,”& “XINTBAR : (169, 168, 167, 166, 163, 162, 161, 160),”& “FIVEVREF : 197,”& “VCCPLL : 177,”& “VCC1 : (1, 4, 9, 11, 17, 19, 25, 31, 33, 38, 44, 46,”& “ 49, 59, 60, 66, 71, 74, 76, 81, 87, 92, 95, 101),”& “VCC2 : (102, 109, 115, 117, 123, 128, 131, 137, 143, 149,”& “ 153, 154, 158, 165, 171, 173, 176, 179, 185, 187,”& “ 196, 199, 201, 204),”& “VSS1 : (2, 3, 7, 8, 16, 18, 24, 30, 32, 43, 47, 48,”& “ 53, 58, 65, 70, 73, 75, 80, 86, 93, 94, 98, 103),”& “VSS2 : (108, 114, 116, 122, 129, 130, 136, 142, 148, 152,”& “ 155, 156, 157, 164, 170, 172, 178, 184, 186, 190,”& “ 195, 198, 200, 205)”;
attribute Tap_Scan_In of TDI : signal is true; attribute Tap_Scan_Mode of TMS : signal is true; attribute Tap_Scan_Out of TDO : signal is true; attribute Tap_Scan_Reset of TRST : signal is true; attribute Tap_Scan_Clock of TCK : signal is (66.0e6, BOTH);
attribute Instruction_Length of Ha_Processor: entity is 4;
attribute Instruction_Opcode of Ha_Processor: entity is
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 PackageExample (Sheet 4 of 8)
80960HA/HD/HT
92 Advance Information Datasheet
“BYPASS (1111),” & “EXTEST (0000),” & “SAMPLE (0001),” & “IDCODE (0010),” & “RUBIST (0111),” & “CLAMP (0100),” & “HIGHZ (1000),” & “Reserved (1011, 1100)”;
attribute Instruction_Capture of Ha_Processor: entity is “0001”;
attribute Instruction_Private of Ha_Processor: entity is “Reserved” ;
attribute Idcode_Register of Ha_Processor: entity is
“0001” & version, “1000100001000000” & part number “00000001001”& manufacturers identity “1”; required by the standard
attribute Register_Access of Ha_Processor: entity is
“Runbist[32] (RUBIST),” &
“Bypass (CLAMP, HIGHZ)”; ******************************************************************************* { The first cell, cell 0, is closest to TDO } { BC_1:Control, Output3 CBSC_1:Bidir BC_4: Input, Clock } *******************************************************************************
attribute Boundary_Cells of Ha_Processor: entity is “BC_4, BC_1, CBSC_1”; attribute Boundary_Length of Ha_Processor: entity is 112; attribute Boundary_Register of Ha_Processor: entity is
“0 (CBSC_1, DP(3), bidir, X, 17, 1, Z),” &
“1 (CBSC_1, DP(2), bidir, X, 17, 1, Z),” &
“2 (CBSC_1, DP(0), bidir, X, 17, 1, Z),” &
“3 (CBSC_1, DP(1), bidir, X, 17, 1, Z),” &
“4 (BC_4, STEST, input, X),” &
“5 (BC_1, FAILBAR, output3, X, 6, 1, Z),” &
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 PackageExample (Sheet 5 of 8)
80960HA/HD/HT
Advance Information Datasheet 93
“6 (BC_1, *, control, 1),” & “7 (BC_4, ONCEBAR, input, X),” & “8 (BC_4, BOFFBAR, input, X),” & “9 (CBSC_1, D(0), bidir, X, 17, 1, Z),” & “10 (CBSC_1, D(1), bidir, X, 17, 1, Z),” & “11 (CBSC_1, D(2), bidir, X, 17, 1, Z),” & “12 (CBSC_1, D(3), bidir, X, 17, 1, Z),” & “13 (CBSC_1, D(4), bidir, X, 17, 1, Z),” & “14 (CBSC_1, D(5), bidir, X, 17, 1, Z),” & “15 (CBSC_1, D(6), bidir, X, 17, 1, Z),” & “16 (CBSC_1, D(7), bidir, X, 17, 1, Z),” & “17 (BC_1, *, control, 1),” & “18 (CBSC_1, D(8), bidir, X, 17, 1, Z),” & “19 (CBSC_1, D(9), bidir, X, 17, 1, Z),” & “20 (CBSC_1, D(10), bidir, X, 17, 1, Z),” & “21 (CBSC_1, D(11), bidir, X, 17, 1, Z),” & “22 (CBSC_1, D(12), bidir, X, 17, 1, Z),” & “23 (CBSC_1, D(13), bidir, X, 17, 1, Z),” & “24 (CBSC_1, D(14), bidir, X, 17, 1, Z),” & “25 (CBSC_1, D(15), bidir, X, 17, 1, Z),” & “26 (CBSC_1, D(16), bidir, X, 17, 1, Z),” & “27 (CBSC_1, D(17), bidir, X, 17, 1, Z),” & “28 (CBSC_1, D(18), bidir, X, 17, 1, Z),” & “29 (CBSC_1, D(19), bidir, X, 17, 1, Z),” & “30 (CBSC_1, D(20), bidir, X, 17, 1, Z),” & “31 (CBSC_1, D(21), bidir, X, 17, 1, Z),” & “32 (CBSC_1, D(22), bidir, X, 17, 1, Z),” & “33 (CBSC_1, D(23), bidir, X, 17, 1, Z),” & “34 (CBSC_1, D(24), bidir, X, 17, 1, Z),” & “35 (CBSC_1, D(25), bidir, X, 17, 1, Z),” & “36 (CBSC_1, D(26), bidir, X, 17, 1, Z),” & “37 (CBSC_1, D(27), bidir, X, 17, 1, Z),” & “38 (CBSC_1, D(28), bidir, X, 17, 1, Z),” & “39 (CBSC_1, D(29), bidir, X, 17, 1, Z),” & “40 (CBSC_1, D(30), bidir, X, 17, 1, Z),” &
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 PackageExample (Sheet 6 of 8)
80960HA/HD/HT
94 Advance Information Datasheet
“41 (CBSC_1, D(31), bidir, X, 17, 1, Z),” &
“42 (BC_4, BTERMBAR, input, X),” &
“43 (BC_4, READYBAR, input, X),” &
“44 (BC_4, HOLD, input, X),” &
“45 (BC_1, HOLDA, output3, X, 46, 1, Z),” &
“46 (BC_1, *, control, 1),” &
“47 (BC_1, ADSBAR, output3, X, 61, 1, Z),” &
“48 (BC_1, BEBAR(3), output3, X, 61, 1, Z),” &
“49 (BC_1, BEBAR(2), output3, X, 61, 1, Z),” &
“50 (BC_1, BEBAR(1), output3, X, 61, 1, Z),” &
“51 (BC_1, BEBAR(0), output3, X, 61, 1, Z),” &
“52 (BC_1, BLASTBAR, output3, X, 61, 1, Z),” &
“53 (BC_1, DENBAR, output3, X, 61, 1, Z),” &
“54 (BC_1, WRBAR, output3, X, 61, 1, Z),” &
“55 (BC_1, DTRBAR, output3, X, 56, 1, Z),” &
“56 (BC_1, *, control, 1),” &
“57 (BC_1, WAITBAR, output3, X, 61, 1, Z),” &
“58 (BC_1, BSTALL, output3, X, 6, 1, Z),” &
“59 (BC_1, DCBAR, output3, X, 61, 1, Z),” &
“60 (BC_1, SUPBAR, output3, X, 61, 1, Z),” &
“61 (BC_1, *, control, 1),” &
“62 (BC_1, LOCKBAR, output3, X, 61, 1, Z),” &
“63 (BC_1, BREQ, output3, X, 6, 1, Z),” &
“64 (BC_1, A(31), output3, X, 80, 1, Z),” &
“65 (BC_1, A(30), output3, X, 80, 1, Z),” &
“66 (BC_1, A(29), output3, X, 80, 1, Z),” &
“67 (BC_1, A(28), output3, X, 80, 1, Z),” &
“68 (BC_1, A(27), output3, X, 80, 1, Z),” &
“69 (BC_1, A(26), output3, X, 80, 1, Z),” &
“70 (BC_1, A(25), output3, X, 80, 1, Z),” &
“71 (BC_1, A(24), output3, X, 80, 1, Z),” &
“72 (BC_1, A(23), output3, X, 80, 1, Z),” &
“73 (BC_1, A(22), output3, X, 80, 1, Z),” &
“74 (BC_1, A(21), output3, X, 80, 1, Z),” &
“75 (BC_1, A(20), output3, X, 80, 1, Z),” &
Example 2. Boundary-Scan Description Language (BSDL) for PQ2 PackageExample (Sheet 7 of 8)
Loading...