8XC52/54/58
PIN DESCRIPTIONS
VCC: Supply voltage.
V
SS
: Circuit ground.
V
SS1
: Secondary ground (not on DIP). Provided to
reduce ground bounce and improve power supply
by-passing.
NOTE:
This pin is not a substitute for the V
SS
pin (pin 22).
(Connection not necessary for proper operation.)
Port 0: Port 0 is an 8-bit, open drain, bidirectional
I/O port. As an output port each pin can sink several
LS TTL inputs. Port 0 pins that have 1’s written to
them float, and in that state can be used as high-impedance inputs.
Port 0 is also the multiplexed low-order address and
data bus during accesses to external Program and
Data Memory. In this application it uses strong internal pullups when emitting 1’s, and can source and
sink several LS TTL inputs.
Port 0 also receives the code bytes during EPROM
programming, and outputs the code bytes during
program verification. External pullup resistors are required during program verification.
Port 1: Port 1 is an 8-bit bidirectional I/O port with
internal pullups. The Port 1 output buffers can drive
LS TTL inputs. Port 1 pins that have 1’s written to
them are pulled high by the internal pullups, and in
that state can be used as inputs. As inputs, Port 1
pins that are externally pulled low will source current
(I
IL
, on the data sheet) because of the internal pull-
ups.
In addition, Port 1 serves the functions of the following special features of the 8XC5X:
Port Pin Alternate Function
P1.0 T2 (External Count Input to Timer/
Counter 2), Clock-Out
P1.1 T2EX (Timer/Counter 2 Capture/
Reload Trigger and Direction Control)
Port 1 receives the low-order address bytes during
EPROM programming and verifying.
Port 2: Port 2 is an 8-bit bidirectional I/O port with
internal pullups. The Port 2 output buffers can drive
LS TTL inputs. Port 2 pins that have 1’s written to
them are pulled high by the internal pullups, and in
that state can be used as inputs. As inputs, Port 2
pins that are externally pulled low will source current
(I
IL
, on the data sheet) because of the internal pull-
ups.
Port 2 emits the high-order address byte during
fetches from external Program Memory and during
accesses to external Data Memory that use 16-bit
addresses (MOVX
@
DPTR). In this application it
uses strong internal pullups when emitting 1’s. During accesses to external Data Memory that use 8-bit
addresses (MOVX
@
Ri), Port 2 emits the contents of
the P2 Special Function Register.
Some Port 2 pins receive the high-order address bits
during EPROM programming and program verification.
Port 3: Port 3 is an 8-bit bidirectional I/O port with
internal pullups. The Port 3 output buffers can drive
LS TTL inputs. Port 3 pins that have 1’s written to
them are pulled high by the internal pullups, and in
that state can be used as inputs. As inputs, Port 3
pins that are externally pulled low will source current
(I
IL
, on the data sheet) because of the pullups.
Port 3 also serves the functions of various special
features of the 8051 Family, as listed below:
Port Pin Alternate Function
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INT0 (external interrupt 0)
P3.3 INT1
(external interrupt 1)
P3.4 T0 (Timer 0 external input)
P3.5 T1 (Timer 1 external input)
P3.6 WR
(external data memory write strobe)
P3.7 RD
(external data memory read strobe)
RST: Reset input. A high on this pin for two machine
cycles while the oscillator is running resets the device. The port pins will be driven to their reset condition when a minimum V
IHI
voltage is applied whether
the oscillator is running or not. An internal pulldown
resistor permits a power-on reset with only a capacitor connected to V
CC
.
ALE: Address Latch Enable output pulse for latching
the low byte of the address during accesses to external memory. This pin (ALE/PROG) is also the
program pulse input during EPROM programming for
the 87C5X.
In normal operation ALE is emitted at a constant
rate of (/6 the oscillator frequency, and may be used
for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.
4