Intel Pentium M 765, Pentium M 735, Pentium M 755, Pentium M 745, Pentium M 725 Datasheet

...
Intel® Pentium® M Processor on 90 nm Process with 2-MB L2 Cache
Datasheet
January 2006
IINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PRO PERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHA TSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING T O FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY P ATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “un defined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
®
The Intel product to deviate from published specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. .
different processor families. See www.intel.com/products/processor_number for details. Intel, Pentium, Celeron, MMX, Intel SpeedStep and the In tel logo are tr ademarks or re gistered tra demarks of Intel Cor poration or it s subsidiaries in the
United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2004—2006, Intel Corporation. All rights reserved
Pentium® M processor on 90 nm process with 2-MB L2 cache may contain design defects or errors known as errata which may cause the
Intel processor numbers are not a measure of performance. Processor numbers differentiat e features within each processor family, not across
2 Datasheet

Contents

1 Introduction....................................................................................................................................7
1.1 Terminology..........................................................................................................................9
1.2 References ...........................................................................................................................9
2 Low Power Features....................................................................................................................11
2.1 Clock Control and Low Power States .................................................................................11
2.1.1 Normal State..........................................................................................................11
2.1.2 AutoHALT Power-Down State ............................................................ ... ... ... .... ... ...11
2.1.3 Stop-Grant State....................................................................................................12
2.1.4 HALT/Grant Snoop State.......................................................................................12
2.1.5 Sleep State ............................................................................................................13
2.1.6 Deep Sleep State...................................................................................................13
2.1.7 Deeper Sleep State ...............................................................................................14
2.2 Enhanced Intel SpeedStep
2.3 Front Side Bus Low Power Enhancements ........................................................................15
2.4 Processor Power Status Indicator (PSI#) Signal ................................................................15
3 Electrical Specifications .............................................................................................................17
3.1 Power and Ground Pins......................................................................................................17
3.1.1 FSB Clock (BCLK[1:0]) and Processor Clocking ...................................................17
3.2 Voltage Identification ..........................................................................................................17
3.3 Catastrophic Thermal Protection........................................................................................18
3.4 Signal Terminations and Unused Pins................................................................................19
3.5 FSB Frequency Select Signals (BSEL[1:0]) .......................................................................19
3.6 FSB Signal Groups.............................................................................................................19
3.7 CMOS Signals ....................................................................................................................20
3.8 Maximum Ratings...............................................................................................................21
3.9 Processor DC Specifications ..............................................................................................21
®
Technology ...........................................................................14
4 Package Mechanical Specifications and Pin Information .......................................................47
4.1 Processor Pinout and Pin List............ .... ... ..........................................................................54
4.2 Alphabetical Signals Reference..........................................................................................70
5 Thermal Specifications and Design Considerations................................................................77
5.1 Thermal Specifications .......................................................................................................80
5.1.1 Thermal Diode .......................................................................................................80
5.1.2 Thermal Diode Offset.............................................................................................81
5.1.3 Intel
Datasheet 3
®
Thermal Monitor...........................................................................................82
Figures
2-1 Clock Control States..................... .... ... ... ... ... .... ... ... ... .................................................................11
3-1 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#A)............................31
3-2 Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#A) ...................32
3-3 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#B)............................33
3-4 Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#B) ...................34
3-5 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#C) ...........................35
3-6 Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#C) ...................36
3-7 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#D) ...........................37
3-8 Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#D) ...................38
3-9 Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#E)............................39
3-10Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#E) ...................40
3-11Active VCC and ICC Load Line ..................................................................................................43
3-12Deep Sleep VCC and ICC Load Line .........................................................................................44
4-1 Micro-FCPGA Package Top and Bottom Isometric Views ............................ ... ... .... ... ... ... ... .... ...47
4-2 Micro-FCPGA Package - Top and Side Views...........................................................................48
4-3 Micro-FCPGA Package - Bottom View.......................................................................................49
4-4 Micro-FCBGA Package Top and Bottom Isometric Views ............................ ... ... .... ... ... ... ... .... ...51
4-5 Micro-FCBGA Package Top and Side Views .............................................................................52
4-6 Micro-FCBGA Package Bottom View.........................................................................................54
4-7 The Coordinates of the Processor Pins as Viewed from the Top of the Package... ... ... ... ... .... ...55
4 Datasheet
Tables
1-1 References ...................................................................................................................................9
3-1 Voltage Identification Definition ..................................................................................................18
3-2 FSB Pin Groups..........................................................................................................................20
3-3 Processor DC Absolute Maximum Ratings....... ... ... .... ... ... ... .... ... ... ....................................... ... ...21
3-4 Voltage and Current Specifications - Standard Voltage Processors ..........................................22
3-5 Voltage and Current Specifications - Low Voltage Processors ..................................................24
3-6 Voltage and Current Specifications - Ultra Low Voltage Processors..........................................26
3-7 Voltage and Current Specifications (Continued).........................................................................28
3-8 Voltage Tolerances for the Intel 3-9 Voltage Tolerances for the Intel 3-10Voltage Tolerances for the Intel 3-11Voltage Tolerances for the Intel 3-12Voltage Tolerances for the Intel 3-13Voltage Tolerances for the Intel 3-14Voltage Tolerances for the Intel 3-15Voltage Tolerances for the Intel 3-16Voltage Tolerances for the Intel 3-17Voltage Tolerances for the Intel 3-18Voltage Tolerances for the Intel 3-19Voltage Tolerances for the Intel 3-20Voltage Tolerances for the Intel 3-21Voltage Tolerances for the Intel
3-22FSB Differential BCLK Specifications.........................................................................................44
3-23AGTL+ Signal Group DC Specifications.....................................................................................45
3-24CMOS Signal Group DC Specifications......................................................................................45
3-25Open Drain Signal Group DC Specifications..............................................................................46
4-1 Micro-FCPGA Package Dimensions...........................................................................................50
4-2 Micro-FCBGA Package Dimensions...........................................................................................53
4-3 Pin Listing by Pin Name..............................................................................................................57
4-4 Pin Listing by Pin Number ..........................................................................................................63
4-5 Signal Description.......................................................................................................................70
5-1 Power Specifications for the Intel
5-2 Thermal Diode Interface.............................................................................................................81
5-3 Thermal Diode Specification.......................................................................................................81
®
Pentium® M Processor (Active State) VID#A........................31
®
Pentium® M Processor (Deep Sleep State) VID#A ...............32
®
Pentium® M Processor (Active State) VID#B........................33
®
Pentium® M Processor (Deep Sleep State) VID#B ...............34
®
Pentium® M Processor (Active State) VID#C........................35
®
Pentium® M Processor (Deep Sleep State) VID#C...............36
®
Pentium® M Processor (Active State) VID#D........................37
®
Pentium® M Processor (Deep Sleep State) VID#D...............38
®
Pentium® M Processor (Active State) VID#E........................39
®
Pentium® M Processor (Deep Sleep State) VID#E ...............40
®
Pentium® M Processor LV (Active State)..............................41
®
Pentium® M Processor LV (Deep Sleep State).....................42
®
Pentium® M Processor ULV (Active State)............................42
®
Pentium® M Processor ULV (Deep Sleep State)...................43
®
Pentium M Processor..........................................................78
Datasheet 5

Revision History

Revision Description Date
001 Initial release of datasheet May 2004 002 Added Intel
• Specifications of Intel
003
004 Added Intel
005
006 • Added Intel 007 008 Added Intel
• Chapter 2 section 2.1.3 - Missing Stop Grant State title added.
• Table 4 - Max ratings specifications updated
• Added Intel
• Added Execute Disable support feature and lead free SLI
• Added Table 3-20 AGTL + Signal Group Signal DC
• Table 3-18 - Voltage Tolerances for Intel
Updated Intel for optimized VID
®
Pentium® M processor 725 and 715 specifications June 2004
and Ultra Low Voltage 733 & 723 added in chapter 3 and chapter
5. Description was previously merged with Auto Halt state section
and is unchanged.
®
Pentium® M processor 765 specifications October 2004
®
Pentium® M processor 753 and 758 specifications
(second layer interconnect) Micro-FCPGA packaging information in chapter 1
Specifications
processor ULV (Deep Sleep State) updated
®
Pentium® M processor 778 specifications July 2005
®
Pentium® M processor 753 and 733J specifications
®
Pentium® M processor 773 specifications January 2006
®
Pentium® M processor Low Voltage 738
®
Pentium® M
July 2004
January 2005
July 2005
§
6 Datasheet

1 Introduction

The Intel® Pentium® M processor based on 90 nm process technology featuring 2-MB L2 cache and 400-MHz front side bus (FSB) is the next generation high- performance, low-power mobile processor based on the Intel
®
Pentium® processor architecture.
Introduction
Throughout this document, Intel Pentium M processor based on 90 nm technology featuring 2-MB L2 cache and 400 MHz FSB will be referred to as Pentium including low voltage and ultra low voltage processors.
This document contains specifications for the Pentium M processors 765/ 755/ 745/ 735/ 725/ 715 Standard Voltage, 778/758/738 Low Voltage and 773/753/733J/733/723 Ultra Low Voltage
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/ products/processor_number for details.
The following list provides some of the key features on this processor:
Supports Intel
®
Architecture with Dynamic Execution
M processor, or simply the processor,
.
On-die, primary 32-KB instruction cache and 32-KB write-back data cache
On-die, 2 MB second level cache with Advanced Transfer Cache Architecture
Way set associativity and ECC (Error Correcting Code) support
Data Prefetch Logic
Streaming SIMD extensions 2 (SSE2)
400 MHz, source-synchronous FSB
Advanced power management features including Enhanced Intel SpeedStep
®
technology
Micro-FCPGA and Micro-FCBGA packaging technologies
Manufactured on Intel’s advanced 90 nanometer process technology with copper interconnect.
Support for MMX™ technology and Internet Streaming SIMD instructions
The processor’s data prefetch logic fetches data to the L2 cache before L1 cache requests
occurs, resulting in reduced bus cycle penalties and improved performance
Micro-FCPGA and Micro-FCBGA packaging technologies, includ ing lead free SLI (second
level interconnect) technology for the Micro-FCBGA package (for Pentium M processors 755, 745, 778, 758, 738, 773, 753, 733J/733, 723)
Execute Disable Bit support for enhanced security (available on processors with CPU
Signature = 06D8h and recommended for implementation on Intel family-based platforms only)
The Pentium M processor will be manufactured on Intel’s advanced 90 nm process technology with copper interconnect. The processor maintains support for MMX technology and Internet Streaming SIMD instructions and full compatibility with IA-32 software. The on-die, 32-KB Level 1 instruction and data caches along with the 2-MB L2 cache with advanced transfer cache
Datasheet 7
®
915 Express chipset
Introduction
architecture enable significant performance improvement over existing mobile processors. The processor’s data prefetch logic fetches data to the L2 cache before L1 cache requests occurs, resulting in reduced bus cycle penalties and improved performance.
The streaming SIMD extensions 2 (SSE2) enable break-through levels of performance in multimedia applications including 3-D graphics, video decoding/encoding, and speech recognition. The new packed double-precision floating-point instructions enhance performance for applications that require greater range and precision, including scientific and engineering applications and advanced 3-D geometry techniques, such as ray tracing.
The Pentium M processor’s 400-MHz FSB utilizes a split-transaction, deferred reply protocol. The 400-MHz FSB uses source-synchronous transfer (SST) of address and data to improve performance by transferring data four times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is referred to as a “double-clocked” or 2X address bus. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth of up to 3.2 GB/second. The FSB uses Advanced Gunning Transceiver Logic (AGTL+) signaling technolo gy, a variant of GTL+ signaling technology with low power enhancements.
The processor features Enhanced Intel SpeedStep technology, which enables real-time dynamic switching between multiple voltage and frequen cy points. This results in optimal performance without compromising low power. The processor features the Auto Halt, Stop Grant, Deep Sleep, and Deeper Sleep low power states.
The Pentium M processor utilizes socketable Micro Flip-Chip Pin Grid Array (Micro-FCPGA) and surface mount Micro Flip-Chip Ball Grid Array (Micro-FCBGA) package technology. The Micro­FCPGA package plugs into a 479-hole, surface-mount, zero insertion force (ZIF) socket, which is referred to as the mPGA479M socket.
Pentium M processors with CPU Signature = 06D8h will also include the Execute Disable Bit capability . This feature combined with a support operating system allows memory to be marked as executable or non executable. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities and can thus help improve the overall security of the system. See the Intel
®
Architecture Software Developer's Manual for more detailed information. Intel will validate this feature only on Intel 915 Express chipset family based platforms and recommends customers implement BIOS changes related to this feature, only on Intel 915 Express chipset family based platforms.
Note: The term AGTL+ is used to refer to Assisted GTL+ signalling technology on some Intel processors.
8 Datasheet

1.1 Terminology

Term Definition
# A “#” symbol after a signal name refers to an active low signal, indicating a signal is in
Front Side Bus (FSB)
the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the “#” symbol implies that the signal is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A’, and D[3:0]# = “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level). XXXX means that the specification or value is yet to be determined.
Refers to the interface between the processor and system core logic (also known as the chipset components).

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document. Please note that “platform design guides,” when used throughout this document, refers to the platform design guides listed below:
Introduction
Table 1-1. References (Sheet 1 of 2)
Intel Pentium M Processor on 90 nm Process with 2-MB L2 Cache ­Specification Update
Mobile Intel
Mobile Intel Update
Intel Intel
Intel
Intel
Intel Datasheet
Intel Chipset Specification Update
Intel
915PM/GM/GMS and 910GML Express Chipset Datasheet http://www.intel.com/
915PM/GM/GMS and 910GML Express Chipset Specification
855PM Chipset Platform Design Guide: For use with IntelPentium M and
CeleronProcessors
855PM Chipset Memory Controller Hub (MCH) Datasheet http://developer.intel.com/
855PM Chipset MCH DDR 333/200/266 MHz Specification Update http://developer.intel.com/
855GM/GME Chipset Graphics and Memory Controller Hub (GMCH)
855GM/GME Chipset Graphics and Memory Controller Hub (GMCH)
855GM/855GME Chipset Platform Design Guide http://developer.intel.com/
Document
Document Number/
Location
http://www.intel.com/ design/mobile/specupdt/
302209.htm
design/mobile/datashts/
305264.htm http://www.intel.com/
design/mobile/specupdt/
307167.htm http://developer.intel.com/
design/mobile/desguide/
252614.htm
design/chipsets/datashts/
252613.htm
design/chipsets/specupdt/
253488.htm http://developer.intel.com/
design/chipsets/datashts/
252615.htm http://developer.intel.com/
design/chipsets/specupdt/
253572.htm
design/mobile/desguide/
252616.htm
1
Datasheet 9
Introduction
Table 1-1. References (Sheet 2 of 2)
Document
IA-32 Intel Architecture Software Developer's Manual http://www.intel.com/
Volume 1: Basic Architecture Volume 2A: Instruction Set Reference Volume 2B: Instruction Set Reference Volume 3: System Programming Guide
NOTE: Contact your Intel representative for the latest revision and document number of this document.
Document Number/
Location
design/pentium4/ manuals/index_new.htm
§
1
10 Datasheet

2 Low Power Features

2.1 Clock Control and Low Power States

The Pentium M processor supports the AutoHALT Power-Down, Stop Grant, Sleep, Deep Sleep, and Deeper Sleep states for optimal power management. See Figure 2-1 for a visual representation of the processor low-power states.
Figure 2-1. Clock Control States
Low Power Features
STPCLK# asserted
Normal Sleep
halt
break
instruction
Auto Halt
STPCLK# deasserted
HLT
Halt break - A20M#, INIT#, INTR, N MI, PREQ#, RESET# , S MI#, or APIC interrupt

2.1.1 Normal State

This is the normal operating state for the processor.
STPCLK#
asserted
STPCLK#
deasserted
snoop
occurs
snoop
serviced
Stop
Grant
snoop
serviced
HALT/
Grant
Snoop
snoop
occurs
SLP# asserted
SLP# deasserted
core voltage raised
Deeper
Sleep
core voltage lowered
V0001-04
DPSLP#
de-asserted
DPSLP# asserted
Deep
Sleep

2.1.2 AutoHALT Power-Down State

AutoHALT Power-Down is a low-power state entered when the processor executes the HALT instruction. The processor will transition to the Normal state upon the occurrence of SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt me ss age. RESET# will cause the processor to immediately initialize itself.
A system management interrupt (SMI) handler will return execution to either Normal state or the AutoHALT Power-Down state. See the IA-32 Intel Volume 3: System Programmer's Guide for more information.
Datasheet 11
®
Architecture Software Developer's Manual,
Low Power Features
The system can generate a STPCLK# while the processor is in the AutoHALT Power-Down state. When the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.
While in AutoHALT Power-Down state, the processor will process bus snoops and interrupts.

2.1.3 Stop-Grant State

When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.
Since the AGTL+ signal pins receive power from the FSB, these pins should not be driven (allowing the level to return to V state. In addition, all other input pins on the FSB should be driven to the inactive state.
RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. A transition back to the Normal state will occur with the de-assertion of the STPCLK# signal. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be deasserted ten or more bus clocks after the de-assertion of SLP#.
A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the FSB (see Section 2.1.3). A transition to the Sleep state (see Section 2.1.5) will occur with the assertion of the SLP# signal.
) for minimum power drawn by the termination resistors in this
CCP
While in the Stop-Grant State, SMI#, INIT# and LINT[1:0] will be latched by the processor, and only serviced when the processor returns to the Normal State. Only one occurrence of each event will be recognized upon return to the Normal state.
While in Stop-Grant state, the processor will process snoops on the FSB and it will latch interrupts delivered on the FSB.
The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be asserted if there is any pending interrupt latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to system logic that it should return the processor to the Normal state.

2.1.4 HALT/Grant Snoop State

The processor responds to snoop or interrupt transactions on the FSB while in Stop-Grant state or in AutoHALT Power-Down state. During a snoop or interrupt transaction, the processor enters the HALT/Grant Snoop state. The processor will stay in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched. After the snoop is serviced or the interrupt is latched, the processor will return to the Stop-Grant state or AutoHALT Power-Down state, as appropriate.
12 Datasheet

2.1.5 Sleep State

A low power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and has stopped all internal clocks. The Sleep state can be entered only from Stop-Grant state. Once in the Stop-Grant state, the processor will enter the Sleep state upon the assertion of the SLP# signal. The SLP# pin should only be asserted when the processor is in the Stop Grant state. SLP# assertions while the processor is not in the Stop-Grant state is out of specification and may result in unapproved operation.
Snoop events that occur while in Sleep State or during a transition into or out of Sleep state will cause unpredictable behavior.
In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.
If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor will reset itself, ignoring the transition through Stop-Grant State. If RESET# is driven active while the processor is in the Sleep State, the SLP# and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the processor correctly executes the reset sequence.
Low Power Features
While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state by asserting the DPSLP# pin. (See Section 2.1.6.) While the processor is in the Sleep state, the SLP# pin must be deasserted if another asynchronous FSB event needs to occur.

2.1.6 Deep Sleep State

Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped during the Deep Sleep state for additional platform level power savings.
BCLK stop/restart timings on 855PM and Intel 855GM chipset-based platforms are as follows:
Deep Sleep entry - DPSLP# and CPU_STP# are asserted simultaneously. The platform clock
chip will stop/tristate BCLK within 2 BCLKs +/- a few nanoseconds.
Deep Sleep exit - DPSLP# and CPU_STP# are deasserted simultaneously. The platform clock
chip will drive BCLK to differential DC levels within 2-3 ns and starts toggling BCLK 2-6 BCLK periods later.
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted after DPSLP# deassertion, as described above. A period of 30 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep State. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state.
While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the FSB while the processor is in Deep Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.
When the processor is in Deep Sleep state, it will not respond to interrupts or snoop transactions.
Datasheet 13
Low Power Features

2.1.7 Deeper Sleep State

The Deeper Sleep state is the lowest power state the processor can enter. This state is functionally identical to the Deep Sleep state but at a lower core voltage. The control signals to the voltage regulator to initiate a transition to the Deeper Sleep state are provided on the platform. Please refer to the platform design guides listed in Table 1-1.

2.2 Enhanced Intel SpeedStep® Technology

The Pentium M processor features Enhanced Intel SpeedStep technology. Unlike previous implementations of Intel SpeedStep technology, this technology enables the processor to switch between multiple frequency and voltage points instead of two. This will enable superior performance with optimal power savings. Switching between states is software controlled un like previous implementations where the GHI# pin is used to toggle between two states. Following are the key features of Enhanced Intel SpeedStep technology:
Multiple voltage/frequency operating points provide optimal performance at the lowest power.
Voltage/Frequency selection is software controlled by writing to processor MSR’s (Model
Specific Registers) thus eliminating chipset dependency.
— If the target frequency is higher than the current frequency, Vcc is ramped up by placing a
new value on the VID pins and the PLL then locks to the new frequency.
— If the target frequency is lower than the current frequency, the PLL locks to the new
frequency and the Vcc is changed through the VID pin mechanism.
— Software transitions are accepted at any time. If a previous transition is in progress, the
new transition is deferred until its completion.
The processor controls voltage ramp rates internally to ensure glitch free transitions.
Low transition latency and large number of transitions possible per second.
— Processor core (including L2 cache) is unavailable for up to 10 s during the frequency
transition
— The bus protocol (BNR# mechanism) is used to block snooping
No bus master arbiter disable required prior to transition and no processor cache flush
necessary.
Improved Intel
— When the on-die thermal sensor indicates that the die temperature is too high, the
processor can automatically perform a transition to a lower frequency/voltage specified in a software programmable MSR.
— The processor waits for a fixed time period. If the die temperature is down to acceptable
levels, an up transition to the previous frequency/voltage point occurs.
— An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling
better system level thermal management.
®
Thermal Monitor mode.
14 Datasheet

2.3 Front Side Bus Low Power Enhancements

The Pentium M processor incorporates the following front side bus (processor system bus) low power enhancements:
Dynamic FSB Power Down
BPRI# control for address and control input buffers
Dynamic On Die Termination disabling
Low VCCP (I/O termination voltage)
The Pentium M processor incorporates the DPWR# signal that controls the data bus input buffers on the processor. The DPWR# signal disables the buffers when not used and activates them only when data bus activity occurs, resulting in significant power savings with no performance impact. BPRI# control also allows the processor address and control input buffers to be turned off when the BPRI# signal is inactive. The on-die termination on the processor FSB buffers is disabled when the signals are driven low, resulting in additional power savings. The low I/O termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all times.

2.4 Processor Power Status Indicator (PSI#) Signal

Low Power Features
The Pentium M processor incorporates the PSI# signal that is asserted when the processor is in a low power (Deep Sleep or Deeper Sleep) state. This signal is asserted upon Deep Sleep entry and deasserted upon exit. PSI# can be used to improve the light load efficiency of the voltage regulator, resulting in platform power savings and ext ended battery life. PSI# can also be used to simplify voltage regulator designs since it removes the need for integrated 100 s timers required to mask the PWRGOOD signal during Deeper Sleep transitions. It also helps loosen PWRGOOD monitoring requirements in the Deeper Sleep state.
§
Datasheet 15
Low Power Features
16 Datasheet
Electrical Specifications

3 Electrical Specifications

3.1 Power and Ground Pins

For clean, on-chip power distribution, the Pentium M processor has a large number of VCC (power) and V must be connected to system ground planes. Use of multiple power and ground planes is recommended to reduce I*R drop. Please refer to the platform design guides for more details. The processor V

3.1.1 FSB Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the system bus interface speed as well as the core frequency of the processor. As in previous generation processors, the Pentium M processor core frequency is a multiple of the BCLK[1:0] frequency. In regards to processor clocking, the Pentium M processor uses a differential clocking implementation.
(ground) inputs. All power pins must be connected to V
SS
pins must be supplied the voltage determined by the VID (Voltage ID) pins.
CC
power planes while all VSS pins
CC

3.2 Voltage Identification

The Pentium M processor uses six voltage identification pins, VID[5:0], to support automatic selection of power supply voltages. The VID pins for the Pentium driven by the processor VID circuitry. Table 3-1 specifies the voltage level corresponding to the state of VID[5:0]. A “1” in this refers to a high-voltage level and a “0” refers to low-voltage level.
M processor are CMOS outputs
Datasheet 17
Electrical Specifications
Table 3-1. Voltage Identification Definition
VID VID
5 4 3 2 1 0
0 0 0 0 0 0 1.708 1 0 0 0 0 0 1.196 0 0 0 0 0 1 1.692 1 0 0 0 0 1 1.180 0 0 0 0 1 0 1.676 1 0 0 0 1 0 1.164 0 0 0 0 1 1 1.660 1 0 0 0 1 1 1.148 0 0 0 1 0 0 1.644 1 0 0 1 0 0 1.132 0 0 0 1 0 1 1.628 1 0 0 1 0 1 1.116 0 0 0 1 1 0 1.612 1 0 0 1 1 0 1.100 0 0 0 1 1 1 1.596 1 0 0 1 1 1 1.084 0 0 1 0 0 0 1.580 1 0 1 0 0 0 1.068 0 0 1 0 0 1 1.564 1 0 1 0 0 1 1.052 0 0 1 0 1 0 1.548 1 0 1 0 1 0 1.036 0 0 1 0 1 1 1.532 1 0 1 0 1 1 1.020 0 0 1 1 0 0 1.516 1 0 1 1 0 0 1.004 0 0 1 1 0 1 1.500 1 0 1 1 0 1 0.988 0 0 1 1 1 0 1.484 1 0 1 1 1 0 0.972 0 0 1 1 1 1 1.468 1 0 1 1 1 1 0.956 0 1 0 0 0 0 1.452 1 1 0 0 0 0 0.940 0 1 0 0 0 1 1.436 1 1 0 0 0 1 0.924 0 1 0 0 1 0 1.420 1 1 0 0 1 0 0.908 0 1 0 0 1 1 1.404 1 1 0 0 1 1 0.892 0 1 0 1 0 0 1.388 1 1 0 1 0 0 0.876 0 1 0 1 0 1 1.372 1 1 0 1 0 1 0.860 0 1 0 1 1 0 1.356 1 1 0 1 1 0 0.844 0 1 0 1 1 1 1.340 1 1 0 1 1 1 0.828 0 1 1 0 0 0 1.324 1 1 1 0 0 0 0.812 0 1 1 0 0 1 1.308 1 1 1 0 0 1 0.796 0 1 1 0 1 0 1.292 1 1 1 0 1 0 0.780 0 1 1 0 1 1 1.276 1 1 1 0 1 1 0.764 0 1 1 1 0 0 1.260 1 1 1 1 0 0 0.748 0 1 1 1 0 1 1.244 1 1 1 1 0 1 0.732 0 1 1 1 1 0 1.228 1 1 1 1 1 0 0.716 0 1 1 1 1 1 1.212 1 1 1 1 1 1 0.700
V
CC
V
5 4 3 2 1 0
V
CC
V

3.3 Catastrophic Thermal Protection

The Pentium M processor supports the THERMTRIP# signal for catastrophic thermal protection. An external thermal sensor should also be used to protect the processor and the system against excessive temperatures. Even with the activation of THERMTRIP#, which halts all processor internal clocks and activity, leakage current can be high enough such that the processor cannot be protected in all conditions without the removal of power to the processor. If the external thermal sensor detects a catastrophic processor temperature of 125 °C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the processor must be turned off within 500 ms to prevent permanent silicon damage due to thermal runaway.
18 Datasheet

3.4 Signal Terminations and Unused Pins

All RSVD (RESERVED) pins must remain unconnected. Connection of these pins to VCC, VSS, or to any other signal (including each other) can result in component malfunction or incompatibility with future Pentium M processors. See Section 4.2 for a pin listing of the processor and the location of all RSVD pins.
For reliable operation, always connect unused inputs or bidirectional sign als to an appropriate signal level. Unused active low AG TL+ inputs may be left as no connects if AGTL+ termination is provided on the processor silicon. Unused active high inputs should be connected through a resistor to ground (V
For details on signal terminations, please refer to the platform design guides.
). Unused outputs can be left unconnected.
SS
Electrical Specifications
The TEST1 and TEST2 pins must have a stuffing option connection to V pull-down resistors.
separately via 1-k
SS

3.5 FSB Frequency Select Signals (BSEL[1:0])

These signals are used to select the FSB clock frequency. They should be connected between the processor and the chipset MCH and clock generator on Intel 915 Express chipset family based platforms. These signals must be left unconnected on platforms designed with the Intel 855 chipset family. On these platforms, FSB clock frequency should be configured on the motherboard.

3.6 FSB Signal Groups

In order to simplify the following discussion, the FSB signals have been combined in to groups by buffer type. AG TL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term "AGTL+ Input" refers to the AGTL+ input grou p as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving.
With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals which are dependant upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 3-2 identifies which signals are common clock, source synchronous, and asynchronous.
Datasheet 19
Electrical Specifications
Table 3-2. FSB Pin Groups
Signal Group Type Signals
1
AGTL+ Common Clock Input Synchronous
to BCLK[1:0]
AGTL+ Common Clock I/O Synchronous
to BCLK[1:0]
AGTL+ Source Synchronous I/O Synchronous
to assoc. strobe
AGTL+ Strobes Synchronous
to BCLK[1:0]
CMOS Input Asynchronous A20M#, DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/
Open Drain Output Asynchronous FERR#, IERR#, PROCHOT#, THERMTRIP# CMOS Output Asynchronous PSI#, VID[5:0], BSEL[1:0] CMOS Input Synchronous
to TCK
Open Drain Output Synchronous
to TCK FSB Clock Clock BCLK[1:0], ITP_CLK[1:0] Power/Other COMP[3:0], DBR#2, GTLREF, RSVD, TEST2, TEST1,
BPRI#, DEFER#, DPWR#, PREQ#, RESET#, RS[2:0]#, TRDY#
ADS#, BNR#, BPM[3:0]#, BR0#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY#
Signals Associated Strobe
REQ[4:0]#, A[16:3]# ADSTB[0]# A[31:17]# ADSTB[1]# D[15:0]#, DINV0# DSTBP0#, DSTBN0# D[31:16]#, DINV1# DSTBP1#, DSTBN1# D[47:32]#, DINV2# DSTBP2#, DSTBN2# D[63:48]#, DINV3# DSTBP3#, DSTBN3#
ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#
NMI, PWRGOOD, SMI#, SLP#, STPCLK#
TCK, TDI, TMS, TRST#
TDO
2
THERMDA, THERMDC, V V
CC_SENSE
, V
SS, VSS_SENSE
, V
[3:0], V
CC
CCA
CCP, VCCQ
[1:0],
NOTES:
1. Refer to Chapter 4 for signal descriptions and termination requirements.
2. BPM[2:0}# and PRDY# are AGTL+ output only signals.
3. In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.

3.7 CMOS Signals

CMOS input signals are shown in Table 3-2. Legacy output FERR#, IERR# and other non-AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These signals do not have setup or hold time specifications in relation to BCLK[1:0]. However, all of the CMOS signals are required to be asserted for at least three BCLKs in order for the processor to recognize them. See Section 3.9 for the DC and AC specifications for the CMOS signal groups.
20 Datasheet

3.8 Maximum Ratings

Table 3-3 lists the processor’s maximum environmental stress ratings. The processor should not
receive a clock while subjected to these conditions. Functional operating parameters are listed in the AC and DC tables. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although the processor contains protective circuitry to resist damage from electro static discharge (ESD), one should always take precautions to avoid high static voltages or electric fields.
Table 3-3. Processor DC Absolute Maximum Ratings
Symbol Parameter Min Max Unit Notes
T
STORAGE Processor storage
V
CC
V
inAGTL+
V
inAsynch_CMOS
temperature Any processor supply
voltage with respect to V AGTL+ buffer DC input
voltage with respect to V CMOS buffer DC input
voltage with respect to V
SS
SS
SS
Electrical Specifications
-40 85 °C 2
-0.3 1.6 V 1
-0.1 1.6 V 1, 2
-0.1 1.6 V 1, 2
NOTES:
1. This rating applies to any processor pin.
2. Contact Intel for storage requirements in excess of one year.

3.9 Processor DC Specifications

The processor DC specifications in this section are defined at the process or core (pads) unless noted otherwise. See Table 4-3 for the pin signal definitions and signal pin assignments. The DC
specifications for these signals are listed in Table 3-24 and Table 3-25.
Table 3-4 through Table 3-25 list the DC specifications for the Pentium
only while meeting specifications for junction temp erature, clock frequency, and input voltages. The Highest Frequency mode (HFM) and Lowest Frequency mode (LFM) refer to the highest and lowest core operating frequencies supported on the processor. Active mode load line s pecifications apply in all states except in the Deep Sleep and Deeper Sleep states. V voltage driven by the voltage regulator at power up in order to set the VID values. Unless specified otherwise, all specifications for the Pentium M processor are at Tjunction = 100° C. Care should be taken to read all notes associated with each parameter.
M processor and are valid
CC,BOOT
is the default
Datasheet 21
Electrical Specifications
Table 3-4. Voltage and Current Specifications - Standard Voltage Processors (Sheet 1 of 2)
Symbol Parameter
V
CCD765
Intel® Pentium® M Processor
765 Core V
Intel SpeedS tep
CC FOR
Operating Points:
2.1 GHz 1.340 1.324 1.308 1.356
1.8 GHz 1.276 1.260 1.244 1.292
1.6 GHz 1.228 1.212 1.212 1.244
1.4 GHz 1.180 1.180 1.164 1.196
1.2 GHz 1.132 1.132 1.116 1.148
1.0 GHz 1.084 1.084 1.084 1.100 800 MHz 1.036 1.036 1.036 1.052 600 MHz 0.988 0.988 0.988 0.988
V
CCD755
Pentium M Processor 755
Core V
for Enhanced Intel
CC
SpeedStep Technology
Operating Points:
2.0 GHz 1.340 1.324 1.308 1.276
1.8 GHz 1.292 1.276 1.276 1.244
1.6 GHz 1.244 1.228 1.228 1.196
1.4 GHz 1.196 1.180 1.180 1.164
1.2 GHz 1.148 1.132 1.132 1.116
1.0 GHz 1.100 1.084 1.084 1.084 800 MHz 1.052 1.036 1.036 1.036 600 MHz 0.988 0.988 0.988 0.988
V
CCD745
Pentium M Processor 745
Core V
for Enhanced Intel
CC
SpeedStep Technology
Operating Points:
1.8 GHz 1.340 1.324 1.308 1.276
1.6 GHz 1.292 1.276 1.260 1.228
1.4 GHz 1.228 1.212 1.212 1.180
1.2 GHz 1.164 1.164 1.148 1.132
1.0 GHz 1.116 1.100 1.100 1.084 800 MHz 1.052 1.052 1.052 1.036 600 MHz 0.988 0.988 0.988 0.988
Enhanced
®
T echnology
VID#A
Typical
VID#B
Typical
VID#C
Typical
VID#D
Typical
VID#E
Typical
Unit Notes
V1, 2
V1, 2
V1, 2
22 Datasheet
Electrical Specifications
Table 3-4. Voltage and Current Specifications - Standard Voltage Processors (Sheet 2 of 2)
Symbol Parameter
V
CCD735
Pentium M Processor 735
Core V
for Enhanced Intel
CC
SpeedStep Technology
Operating Points:
1.7 GHz 1.340 1.324 1.308 1.276
1.4 GHz 1.244 1.244 1.228 1.212
1.2 GHz 1.180 1.180 1.164 1.148
1.0 GHz 1.116 1.116 1.116 1.100 800 MHz 1.052 1.052 1.052 1.052 600 MHz 0.988 0.988 0.988 0.988
V
CCD725
Pentium M Processor 725
Core V
for Enhanced Intel
CC
SpeedStep Technology
Operating Points:
1.6 GHz 1.340 1.324 1.308 1.276
1.4 GHz 1.276 1.260 1.244 1.228
1.2 GHz 1.212 1.196 1.180 1.164
1.0 GHz 1.132 1.132 1.116 1.116 800 MHz 1.068 1.068 1.052 1.052 600 MHz 0.988 0.988 0.988 0.988
V
CCD715
Pentium M Processor 715
Core V
for Enhanced Intel
CC
SpeedStep Technology
Operating Points:
1.5 GHz 1.340 1.324 1.308 1.276
1.2 GHz 1.228 1.212 1.212 1.180
1.0 GHz 1.148 1.148 1.132 1.116 800 MHz 1.068 1.068 1.068 1.052 600 MHz 0.988 0.988 0.988 0.988
VID#A
Typical
VID#B
Typical
VID#C
Typical
VID#D
Typical
VID#E
Typical
Unit Notes
V1, 2
V1, 2
V1, 2
NOTES:
1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline specifications for the Pentium M processor is required to ensure reliable processor operation.
2. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the processor’s socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-M minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
Datasheet 23
Electrical Specifications
Table 3-5. Voltage and Current Specifications - Low Voltage Processors (Sheet 1 of 2)
Symbol Parameter Min Typ Max Unit Note
V
CCD778
V
CCD758
Intel® Pentium® M
Processor, Low Voltage
778 Core VCC for
Enhanced Intel
SpeedStep
Pentium M Processor,
SpeedStep Technology
®
Operating Points:
758 Core VCC for
Operating Points:
Technology
1.6 GHz 1.116
1.5 GHz 1.116
1.4 GHz 1.100
1.3 GHz 1.084
1.2 GHz 1.068
1.1 GHz 1.052
1.0 GHz 1.052
900 GHz 1.036 800 MHz 1.020 600 MHz 0.988
Low Voltage,
Enhanced Intel
1.5 GHz 1.116
1.4 GHz 1.116
1.3 GHz 1.100
1.2 GHz 1.084
1.1 GHz 1.068
1.0 GHz 1.052
900 GHz 1.036 800 MHz 1.020 600 MHz 0.988
V1, 2
V1, 2
24 Datasheet
Electrical Specifications
Table 3-5. Voltage and Current Specifications - Low Voltage Processors (Sheet 2 of 2)
Symbol Parameter Min Typ Max Unit Note
V
CCD738
NOTES:
1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline specifications for the Pentium M processor is required to ensure reliable processor operation.
2. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the processor’s socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-M minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
Pentium M Processor,
Low Voltage,
738 Core VCC for
Enhanced Intel
SpeedStep Technology
Operating Points:
1.4 GHz 1.116
1.3 GHz 1.116
1.2 GHz 1.100
1.1 GHz 1.068
1.0 GHz 1.052 900 GHz 1.036 800 MHz 1.020 600 MHz 0.988
V1, 2
Datasheet 25
Electrical Specifications
Table 3-6. Voltage and Current Specifications - Ultra Low Voltage Processors (Sheet 1 of 2)
VID#
VID#
Symbol Parameter Min Typ Max
GTyp
HTyp
VID#I
Typ
VID#
J Typ
VID#
K Typ
VID#
L Typ
Unit Note
V
CCD773
V
CCD753
V
CCD733J
Intel® Pentium® M
Processor, Ultra Low
Voltage,
773 Core VCC for
Enhanced Intel
SpeedStep
®
T echnology Operating
Points:
1.3 GHz 0.956 0.940 0.924 0.908 0.892 0.876
1.2 GHz 0.940 0.924 0.908 0.908 0.892 0.876
1.1 GHz 0.924 0.908 0.892 0.892 0.876 0.860
1.0 GHz 0.908 0.892 0.876 0.876 0.860 0.860 900 MHz 0.876 0.876 0.860 0.860 0.860 0.844 800 MHz 0.860 0.860 0.844 0.844 0.844 0.844 600 MHz 0.812 0.812 0.812 0.812 0.812 0.812
Pentium M Processor,
Ultra Low Voltage, 753 Core VCC for
Enhanced Intel
SpeedStep
T echnology Operating
Points:
1.2 GHz 0.956 0.940 0.924 0.908 0.892 0.876
1.1 GHz 0.940 0.924 0.908 0.892 0.892 0.876
1.0 GHz 0.908 0.908 0.892 0.876 0.876 0.860 900 MHz 0.892 0.876 0.876 0.860 0.860 0.844 800 MHz 0.860 0.860 0.860 0.844 0.844 0.844 600 MHz 0.812 0.812 0.812 0.812 0.812 0.812
Pentium M Processor,
Ultra Low Voltage,
733J Core VCC for
Enhanced Intel
SpeedStep
T echnology operating
points:
1.1 GHz 0.956 0.940 0.924 0.908 0.892 0.876
1.0 GHz 0.940 0.924 0.908 0.892 0.876 0.876 900 MHz 0.908 0.892 0.892 0.876 0.860 0.860 800 MHz 0.876 0.876 0.860 0.860 0.844 0.844 600 MHz 0.812 0.812 0.812 0.812 0.812 0.812
V2, 3
V2, 3
V2, 3, 4
26 Datasheet
Electrical Specifications
Table 3-6. Voltage and Current Specifications - Ultra Low Voltage Processors (Sheet 2 of 2)
VID#
VID#
Symbol Parameter Min Typ Max
GTyp
HTyp
VID#I
Typ
VID#
J Typ
VID#
K Typ
VID#
L Typ
Unit Note
V
CCD733
V
CCD723
Pentium M Processor,
Ultra Low Voltage, 733 Core VCC for
Enhanced Intel
SpeedStep
T echnology Operating
Points:
1.1 GHz 0.940
1.0 GHz 0.924 900 MHz 0.892 800 MHz 0.876 600 MHz 0.812
Pentium M Processor,
Ultra Low Voltage, 723 Core VCC for
Enhanced Intel
SpeedStep
T echnology Operating
Points:
1.0 GHz 0.940 900 MHz 0.908 800 MHz 0.876 600 MHz 0.812
NOTES:
1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline specifications for the Pentium M processor is required to ensure reliable processor operation.
2. These are VID values. Individual processor VID values may be calibrated during manufacturing such that two devices at the same speed may have different VID settings. Actual voltage supplied to the processor should be as specified in the load lines in Figure 3-11 and Figure 3-12. Adherence to load line specifications is required to ensure reliable processor operation.
3. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the processor’s socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-M minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
4. For 733J, CPU signature = 06D8h.
V1, 3
V1, 3
Datasheet 27
Electrical Specifications
Table 3-7. Voltage and Current Specifications (Continued) (Sheet 1 of 3)
Symbol Parameter Min Typ Max Unit Note
V
CC,BOOT
V
CCP
V
CCA
for
V
CCA
778, 758, 738 and 753,733J, 733, 723
V
CCDPRS
LP,TR1
V
CCDPRS
LP,ST1
V
CCDPRS
LP,TR2
V
CCDPRS
LP,ST2
I
CCDESICC
I
CC
Default V Initial Power-Up
AGTL+ Termination
Voltage for
CC
1.14 1.20 1.26 V 2
0.997 1.05 1.102 V 2
voltage PLL Supply Voltage 1.71 1.8 1.89 V 2, PLL Supply Voltage for
V2, 8
Pentium M Processors 778/758/738 1.71 1.8 1.89 753/733J/733/723 1.425 1.5 1.575 Transient Deeper Sleep
0.695 0.748 0.795 V 2
Voltage Static Deeper Sleep
0.705 0.748 0.785 V 2
Voltage Transient Deeper Sleep
0.669 0.726 0.783 V 2, 9
Voltage Static Deeper Sleep
0.679 0.726 0.793 V 2, 9
Voltage
for Pentium M
25 A 5 Processors Recommended Design Target
ICC for Pentium M
A3, 10
Processors: 765/755/745/778/758/738/
8.1
735/725/715 at LFM Vcc 765/755/745/735/725/715
21.0
at HFM Vcc 778/758/738 at HFM Vcc 12.0 773/753/733J/733/723 at
4.0
LFM Vcc 773/753/733J at HFM Vcc 7.5 773/733/723 at HFM Vcc 7.0
28 Datasheet
Electrical Specifications
Table 3-7. Voltage and Current Specifications (Continued) (Sheet 2 of 3)
Symbol Parameter Min Typ Max Unit Note
I
AH,
I
SGNT
I
SLP
I
DSLP
ICC Auto-Halt & Stop­Grant for Pentium M Processors:
765/755/745/778/758/738/
6.0
735/725/715 at LFM Vcc 765/755/745/735/725/715
15.1
at HFM Vcc 778/758/738 at HFM Vcc 6.4 773/753/733J at LFM Vcc 2.3
733/723 at LFM Vcc 2.1 773/753/733J HFM Vcc 3.3 733/723 at HFM Vcc 3.1 ICC Sleep for Pentium M
Processors: 765/755/745/778/758/738/
5.9
735/725/715 at LFM Vcc 765/755/745/735/725/715
14.8
at HFM Vcc 778/758/738 at HFM Vcc 6.2 773/753/733J at LFM Vcc 2.2 733/723 at LFM Vcc 2.0 773/753/733J at HFM Vcc 3.2 733/723 at HFM Vcc 3.0 ICC Deep Sleep for
Pentium M Processors: 765/755/745/778/758/738/
5.8
735/725/715 at LFM Vcc 765/755/745/735/725/715
14.2
at HFM Vcc 778/758/738 at HFM Vcc 5.7 773/753/733J at LFM Vcc 2.1 733/723 at LFM Vcc 1.9 773/753/733J at HFM Vcc 2.9 733/723 at HFM Vcc 2.7
A4, 10
A4, 10
A4, 10
Datasheet 29
Electrical Specifications
Table 3-7. Voltage and Current Specifications (Continued) (Sheet 3 of 3)
Symbol Parameter Min Typ Max Unit Note
I
DPRSLP1ICC
Deeper Sleep @
0.748 V for Pentium M
A 4, 9, 10
Processors: 765/755/745/778/758/738/
2.5
735/725/715 753/733J/733/723 1.6
I
DPRSLP1ICC
Deeper Sleep @
0.726 V for Pentium M
A 4, 9, 10
Processors: 765/755/745/778/758/738/
2.3
735/725/715 753/733J/733/723 1.3
dI
I
CCA
I
CCP
CC/DT
V
power supply current
CC
slew rate ICC for V ICC for V
supply 120 mA
CCA
supply 2.5 A
CCP
0.5 A/ns 6, 7
NOTES:
1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and maximum voltages) are defined in the load line tables i.e., Table 3-8 through Table 3-21. Adherence to loadline specifications for the Pentium M processor is required to ensure reliable processor operation.
2. The voltage specifications are assumed to be measured at a via on the motherboard’s opposite side of the processor’s socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-Mohm minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
3. Specified at V
4. Specified at the VID voltage.
5. The I
CCDES
designed to this specification.
CC,STATIC
(max) specification comprehends future processor HFM frequencies. Platforms should be
(nominal) under maximum signal loading conditions.
6. Based on simulations and averaged over the duration of any change in current. Specified by design/ characterization at nominal V
7. Measured at the bulk capacitors on the motherboard.
. Not 100% tested.
CC
8. Pentium M processors LV and ULV will support VCCA supply voltages of both 1.8 V ±5% and1.5 V ±5%.
9. Deeper sleep voltage of 0.726 V (typical) is supported on LV and ULV Pentium M processors with C PU signature =06D8h. A typical voltage setting between 0.726 V and 0.748 V may be used but the minimum and maximum voltages specified in Table 3-7 should not be exceeded.
10.For 733J, CPU signature = 06D8h.
30 Datasheet
Electrical Specifications
Table 3-8. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#A
MODE
ACTIVE
Highest Frequency Mode: VID=1.340V, Offset=0% Lowest Frequency Mode: VID=0.988V, Offset=0%
I
, A VCC, V
CC
0 1.340 1.320 1.360 1.310 1 .370 0.0 0.988 0.973 1.003 0.963 1.013
0.9 1.337 1.317 1.357 1.307 1.367 0.4 0.987 0.972 1.002 0.9 62 1.012
1.9 1.334 1.314 1.355 1.304 1.365 0.9 0.985 0.971 1.000 0.9 61 1.010
2.8 1.332 1.312 1.352 1.302 1.362 1.3 0.984 0.969 0.999 0.9 59 1.009
3.7 1.329 1.309 1.349 1.299 1.359 1.7 0.983 0.968 0.998 0.9 58 1.008
4.6 1.326 1.306 1.346 1.296 1.356 2.1 0.982 0.967 0.996 0.9 57 1.006
5.6 1.323 1.303 1.343 1.293 1.353 2.6 0.980 0.966 0.995 0.9 56 1.005
6.5 1.321 1.300 1.341 1.290 1.351 3.0 0.979 0.964 0.994 0.9 54 1.004
7.4 1.318 1.298 1.338 1.288 1.348 3.4 0.978 0.963 0.993 0.9 53 1.003
8.3 1.315 1.295 1.335 1.285 1.345 3.8 0.976 0.962 0.991 0.9 52 1.001
9.3 1.312 1.292 1.332 1.282 1.342 4.3 0.975 0.960 0.990 0.9 50 1.000
10.2 1.309 1.289 1.330 1.279 1. 340 4.7 0.974 0.959 0.989 0.949 0.999
11.1 1.307 1.287 1.327 1.277 1. 337 5.1 0.973 0.958 0.987 0.948 0.997
12.0 1.304 1.284 1.324 1.274 1. 334 5.5 0.971 0.957 0.986 0.947 0.996
13.0 1.301 1.281 1.321 1.271 1. 331 6.0 0.970 0.955 0.985 0.945 0.995
13.9 1.298 1.278 1.318 1.268 1. 328 6.4 0.969 0.954 0.984 0.944 0.994
14.8 1.296 1.275 1.316 1.265 1. 326 6.8 0.968 0.953 0.982 0.943 0.992
15.7 1.293 1.273 1.313 1.263 1. 323 7.2 0.966 0.951 0.981 0.941 0.991
16.7 1.290 1.270 1.310 1.260 1. 320 7.7 0.965 0.950 0.980 0.940 0.990
17.6 1.287 1.267 1.307 1.257 1 .317
18.5 1.284 1.264 1.305 1.254 1 .315 8.6 0.818 0.806 0.831 0.796 0.841
19.4 1.282 1.262 1.302 1.252 1 .312 9.1 0.817 0.804 0.829 0.794 0.839
20.4 1.279 1.259 1.299 1.249 1 .309 9.6 0.815 0.803 0.828 0.793 0.838
21.3 1.276 1.256 1.296 1.246 1 .306 10.1 0.814 0.801 0.826 0.791 0.836
22.2 1.273 1.253 1.293 1.243 1 .303 11.935 0.808 0.796 0.821 0.786 0.831
23.1 1.271 1.250 1.291 1.240 1 .301 12.435 0.807 0.794 0.819 0.784 0.829
24.1 1.268 1.248 1.288 1.238 1 .298 12.935 0.805 0.793 0.818 0.783 0.828
25.0 1.265 1.245 1.285 1.235 1.295
STATIC Ripple
MinMaxMinMax MinMaxMinMax
ICC, A VCC, V
8.1 0.964 0.949 0.979 0.939 0.989
13.435 0.804 0.791 0.816 0.781 0.826
STATIC
Ripple
Figure 3-1. Illustration of Act iv e State V
Static and Ripple Tolerances (HFM- VID#A)
CC
Highest-Frequency Mode (VID = 1.340V): Active
1.380
1.360
1.340
1.340
1.320
1.300
VCC, V
1.280
1.260
1.240
1.220 0 5 10 15 20 25
ICC, A
STATIC Static Min Static Max Ripple Min Rippl e Max
Datasheet 31
Electrical Specifications
Table 3-9. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep St ate) VID#A
MODE
Highest Frequency Mode: VID=1.340V, Off set=-1. 2%
, A VCC, V
I
CC
0.0 1. 324 1. 304 1. 344 1. 294 1. 354 0. 0 0. 976 0. 961 0. 991 0. 951 1. 001
0.9 1. 321 1. 301 1. 341 1. 291 1. 351 0. 4 0. 975 0. 960 0. 990 0. 950 1. 000
1.9 1. 318 1. 298 1. 338 1. 288 1. 348 0. 8 0. 974 0. 959 0. 989 0. 949 0. 999
2.8 1. 315 1. 295 1. 336 1. 285 1. 346 1. 2 0. 973 0. 958 0. 987 0. 948 0. 997
3.8 1. 313 1. 292 1. 333 1. 282 1. 343 1. 5 0. 972 0. 957 0. 986 0. 947 0. 996
4.7 1. 310 1. 290 1. 330 1. 280 1. 340 1. 9 0. 970 0. 956 0. 985 0. 946 0. 995
5.7 1. 307 1. 287 1. 327 1. 277 1. 337 2. 3 0. 969 0. 954 0. 984 0. 944 0. 994
6.6 1. 304 1. 284 1. 324 1. 274 1. 334 2. 7 0. 968 0. 953 0. 983 0. 943 0. 993
7.6 1. 301 1. 281 1. 321 1. 271 1. 331 3. 1 0. 967 0. 952 0. 982 0. 942 0. 992
Deep Sleep
8.5 1. 298 1. 278 1. 318 1. 268 1. 328 3. 5 0. 966 0. 951 0. 981 0. 941 0. 991
9.5 1. 296 1. 275 1. 316 1. 265 1. 326 3. 9 0. 965 0. 950 0. 979 0. 940 0. 989
10.4 1.293 1. 273 1. 313 1. 263 1. 323 4.3 0. 963 0. 949 0. 978 0. 939 0. 988
11.4 1.290 1. 270 1. 310 1. 260 1. 320 4.6 0. 962 0. 947 0. 977 0. 937 0. 987
12.3 1.287 1. 267 1. 307 1. 257 1. 317 5.0 0. 961 0. 946 0. 976 0. 936 0. 986
13.3 1.284 1. 264 1. 304 1. 254 1. 314 5.4 0. 960 0. 945 0. 975 0. 935 0. 985
14.2 1.281 1.261 1.301 1.251 1.311 5.8 0.959 0.944 0.974 0.934 0. 984
STATIC
MinMaxMinMax MinMaxMinMax
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%
, A VCC, V
I
CC
STATIC
RippleRipple
Figure 3-2. Illustration of Deep Sleep State V
Lowest-Frequency Mode (VID = 0.988V): Deep Sleep
1.010
1.000
0.990
0.980
0.976
0.970
0.960
0.950
0.940
0.930
0.0 1.0 2.0 3.0 4.0 5.0
STATIC Static Min Static M ax Ripple M in Ripple Max
Static and Ripple Tolerances (LFM- VID#A)
CC
32 Datasheet
Electrical Specifications
Table 3-10. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#B
MODE
ACTIVE
Highest Frequency Mode: VID=1.324V, Offset=0% Lowest Frequency Mode: VID=0.988V, Offset=0%
, A VCC, V
I
CC
0 1.324 1.304 1.344 1.294 1.354 0.0 0.988 0.973 1.003 0.963 1.013
0.9 1.321 1.301 1.341 1.291 1.351 0.4 0.987 0.972 1.002 0.962 1.012
1.9 1.318 1.299 1.338 1.289 1.348 0.9 0.985 0.971 1.000 0.961 1.010
2.8 1.316 1.296 1.336 1.286 1.346 1.3 0.984 0.969 0.999 0.959 1.009
3.7 1.313 1.293 1.333 1.283 1.343 1.7 0.983 0.968 0.998 0.958 1.008
4.6 1.310 1.290 1.330 1.280 1.340 2.1 0.982 0.967 0.996 0.957 1.006
5.6 1.307 1.287 1.327 1.277 1.337 2.6 0.980 0.966 0.995 0.956 1.005
6.5 1.305 1.285 1.324 1.275 1.334 3.0 0.979 0.964 0.994 0.954 1.004
7.4 1.302 1.282 1.322 1.272 1.332 3.4 0.978 0.963 0.993 0.953 1.003
8.3 1.299 1.279 1.319 1.269 1.329 3.8 0.976 0.962 0.991 0.952 1.001
9.3 1.296 1.276 1.316 1.266 1.326 4.3 0.975 0.960 0.990 0.950 1.000
10.2 1.293 1.274 1.313 1.264 1.323 4.7 0.974 0.959 0.989 0.949 0.999
11.1 1.291 1.271 1.311 1.261 1.321 5.1 0.973 0.958 0.987 0.948 0.997
12.0 1.288 1.268 1.308 1.258 1.318 5.5 0.971 0.957 0.986 0.947 0.996
13.0 1.285 1.265 1.305 1.255 1.315 6.0 0.970 0.955 0.985 0.945 0.995
13.9 1.282 1.262 1.302 1.252 1.312 6.4 0.969 0.954 0.984 0.944 0.994
14.8 1.280 1.260 1.299 1.250 1.309 6.8 0.968 0.953 0.982 0.943 0.992
15.7 1.277 1.257 1.297 1.247 1.307 7.2 0.966 0.951 0.981 0.941 0.991
16.7 1.274 1.254 1.294 1.244 1.304 7.7 0.965 0.950 0.980 0.940 0.990
17.6 1.271 1.251 1.291 1.241 1.301 8.1 0.964 0.949 0.979 0.939 0.989
18.5 1.268 1.249 1.288 1.239 1.298 8.6 0.818 0.806 0.831 0.796 0.841
19.4 1.266 1.246 1.286 1.236 1.296 9.1 0.817 0.804 0.829 0.794 0.839
20.4 1.263 1.243 1.283 1.233 1.293 9.6 0.815 0.803 0.828 0.793 0.838
21.3 1.260 1.240 1.280 1.230 1.290 10.1 0.814 0.801 0.826 0.791 0.836
22.2 1.257 1.237 1.277 1.227 1.287 11.935 0.808 0.796 0.821 0.786 0.831
23.1 1.255 1.235 1.274 1.225 1.284 12.435 0.807 0.794 0.819 0.784 0.829
24.1 1.252 1.232 1.272 1.222 1.282 12.935 0.805 0.793 0.818 0.783 0.828
25.0 1.249 1.229 1.269 1.219 1.279 13.435 0.804 0.791 0.816 0.781 0.826
STATIC Ripple
MinMaxMinMax MinMaxMinMax
ICC, A VCC, V
STATIC
Ripple
Figure 3-3. Illustration of Act iv e State V
Static and Ripple Tolerances (HFM- VID#B)
CC
Highest-Frequency Mode (VID = 1.324V): Active
1.380
1.360
1.340
1.324
1.320
1.300
1.280
VCC, V
1.260
1.240
1.220
1.200 0 5 10 15 20 25
ICC, A
STATIC Static Min Static Ma x Ripple Min Ripple Max
Datasheet 33
Electrical Specifications
Table 3-11. Voltage Tolerances for the Intel
®
Pentium® M Processor (Deep Sleep State) VID#B
Highest Frequency Mode: VID=1.324V, Off set =-1. 2%
MODE
Deep Sleep
I
, A VCC, V
CC
0.0 1.308 1. 288 1.328 1. 278 1.338 0. 0 0.976 0.961 0. 991 0.951 1. 001
0.9 1.305 1. 285 1.325 1. 275 1.335 0. 4 0.975 0.960 0. 990 0.950 1. 000
1.9 1.302 1. 283 1.322 1. 273 1.332 0. 8 0.974 0.959 0. 989 0.949 0. 999
2.8 1.300 1. 280 1.319 1. 270 1.329 1. 2 0.973 0.958 0. 987 0.948 0. 997
3.8 1.297 1. 277 1.317 1. 267 1.327 1. 5 0.972 0.957 0. 986 0.947 0. 996
4.7 1.294 1. 274 1.314 1. 264 1.324 1. 9 0.970 0.956 0. 985 0.946 0. 995
5.7 1.291 1. 271 1.311 1. 261 1.321 2. 3 0.969 0.954 0. 984 0.944 0. 994
6.6 1.288 1. 268 1.308 1. 258 1.318 2. 7 0.968 0.953 0. 983 0.943 0. 993
7.6 1.285 1. 266 1.305 1. 256 1.315 3. 1 0.967 0.952 0. 982 0.942 0. 992
8.5 1.283 1. 263 1.302 1. 253 1.312 3. 5 0.966 0.951 0. 981 0.941 0. 991
9.5 1.280 1. 260 1.300 1. 250 1.310 3. 9 0.965 0.950 0. 979 0.940 0. 989
10.4 1. 277 1. 257 1. 297 1.247 1. 307 4.3 0.963 0.949 0.978 0. 939 0. 988
11.4 1. 274 1. 254 1. 294 1.244 1. 304 4.6 0.962 0.947 0.977 0. 937 0. 987
12.3 1. 271 1. 251 1. 291 1.241 1. 301 5.0 0.961 0.946 0.976 0. 936 0. 986
13.3 1. 268 1. 248 1. 288 1.238 1. 298 5.4 0.960 0.945 0.975 0. 935 0. 985
14.2 1.266 1. 246 1.285 1.236 1.295 5.8 0.959 0.944 0.974 0.934 0. 984
STATIC RippleRipple
Mi n Ma x Mi n Ma x Mi n Ma x Mi n Ma x
Figure 3-4. Illustration of Deep Sleep State V
Lowest-Frequency Mode (VID = 0.988V): Deep Sleep
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%
ICC, A VCC, V
STATIC
§
Static and Ripple Tolerances (LFM- VID#B)
CC
1.010
1.000
0.990
0.980
0.976
0.970
0.960
0.950
0.940
0.930
0.01.02.03.04.05.0
STATIC Static M in Stat ic Max Ripple M in Ripple Max
34 Datasheet
Electrical Specifications
Table 3-12. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#C
MODE
ACTIVE
Highest Frequency Mode: VID=1.308V, Offset=0% Lowest Frequency Mode: VID=0.988V, Offset=0%
, A VCC, V
I
CC
0 1.308 1.288 1.328 1.278 1.338 0.0 0.988 0.973 1.003 0.963 1.013
0.9 1.305 1.286 1.325 1.276 1.335 0.4 0.987 0.972 1.002 0.962 1.012
1.9 1.302 1.283 1.322 1.273 1.332 0.9 0.985 0.971 1.000 0.961 1.010
2.8 1.300 1.280 1.319 1.270 1.329 1.3 0.984 0.969 0.999 0.959 1.009
3.7 1.297 1.277 1.317 1.267 1.327 1.7 0.983 0.968 0.998 0.958 1.008
4.6 1.294 1.274 1.314 1.264 1.324 2.1 0.982 0.967 0.996 0.957 1.006
5.6 1.291 1.272 1.311 1.262 1.321 2.6 0.980 0.966 0.995 0.956 1.005
6.5 1.289 1.269 1.308 1.259 1.318 3.0 0.979 0.964 0.994 0.954 1.004
7.4 1.286 1.266 1.305 1.256 1.315 3.4 0.978 0.963 0.993 0.953 1.003
8.3 1.283 1.263 1.303 1.253 1.313 3.8 0.976 0.962 0.991 0.952 1.001
9.3 1.280 1.261 1.300 1.251 1.310 4.3 0.975 0.960 0.990 0.950 1.000
10.2 1.277 1.258 1.297 1.248 1.307 4.7 0.974 0.959 0.989 0.949 0.999
11.1 1.275 1.255 1.294 1.245 1.304 5.1 0.973 0.958 0.987 0.948 0.997
12.0 1.272 1.252 1.292 1.242 1.302 5.5 0.971 0.957 0.986 0.947 0.996
13.0 1.269 1.249 1.289 1.239 1.299 6.0 0.970 0.955 0.985 0.945 0.995
13.9 1.266 1.247 1.286 1.237 1.296 6.4 0.969 0.954 0.984 0.944 0.994
14.8 1.264 1.244 1.283 1.234 1.293 6.8 0.968 0.953 0.982 0.943 0.992
15.7 1.261 1.241 1.280 1.231 1.290 7.2 0.966 0.951 0.981 0.941 0.991
16.7 1.258 1.238 1.278 1.228 1.288 7.7 0.965 0.950 0.980 0.940 0.990
17.6 1.255 1.236 1.275 1.226 1.285
18.5 1.252 1.233 1.272 1.223 1.282 8.6 0.818 0.806 0.831 0.796 0.841
19.4 1.250 1.230 1.269 1.220 1.279 9.1 0.817 0.804 0.829 0.794 0.839
20.4 1.247 1.227 1.267 1.217 1.277 9.6 0.815 0.803 0.828 0.793 0.838
21.3 1.244 1.224 1.264 1.214 1.274 10.1 0.814 0.801 0.826 0.791 0.836
22.2 1.241 1.222 1.261 1.212 1.271 11.935 0.808 0.796 0.821 0.786 0.831
23.1 1.239 1.219 1.258 1.209 1.268 12.435 0.807 0.794 0.819 0.784 0.829
24.1 1.236 1.216 1.255 1.206 1.265 12.935 0.805 0.793 0.818 0.783 0.828
25.0 1.233 1.213 1.253 1.203 1.263
STATIC Ripple
MinMaxMinMax MinMaxMinMax
ICC, A VCC, V
8.1 0.964 0.949 0.979 0.939 0.989
13.435 0.804 0.791 0.816 0.781 0.826
STATIC
Ripple
Figure 3-5. Illustration of Act iv e State V
Static and Ripple Tolerances (HFM- VID#C)
CC
Highest-Frequency Mode (VID = 1 .308V): A ctive
1.360
1.340
1.320
1.308
1.300
1.280
1.260
VCC, V
1.240
1.220
1.200
1.180 0 5 10 15 20 25
ICC, A
STATIC Static M in Static Max Ripple Min Ripple Max
Datasheet 35
Electrical Specifications
Table 3-13. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#C
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%
ICC, A VCC, V
STATIC
MODE
Highest Frequency Mode: VID=1.308V, Offset=-1.2%
I
, A VCC, V
CC
0.0 1. 292 1.273 1.312 1.263 1.322 0.0 0.976 0.961 0.991 0.951 1.001
0.9 1. 289 1.270 1.309 1.260 1.319 0.4 0.975 0.960 0.990 0.950 1.000
1.9 1. 287 1.267 1.306 1.257 1.316 0.8 0.974 0.959 0.989 0.949 0.999
2.8 1. 284 1.264 1.303 1.254 1.313 1.2 0.973 0.958 0.987 0.948 0.997
3.8 1. 281 1.261 1.301 1.251 1.311 1.5 0.972 0.957 0.986 0.947 0.996
4.7 1. 278 1.258 1.298 1.248 1.308 1.9 0.970 0.956 0.985 0.946 0.995
5.7 1. 275 1.256 1.295 1.246 1.305 2.3 0.969 0.954 0.984 0.944 0.994
6.6 1. 272 1.253 1.292 1.243 1.302 2.7 0.968 0.953 0.983 0.943 0.993
7.6 1. 270 1.250 1.289 1.240 1.299 3.1 0.967 0.952 0.982 0.942 0.992
Deep Sleep
8.5 1. 267 1.247 1.286 1.237 1.296 3.5 0.966 0.951 0.981 0.941 0.991
9.5 1. 264 1.244 1.284 1.234 1.294 3.9 0.965 0.950 0.979 0.940 0.989
10.4 1.261 1. 241 1.281 1.231 1.291 4.3 0.963 0.949 0.978 0.939 0.988
11.4 1.258 1. 239 1.278 1.229 1.288 4.6 0.962 0.947 0.977 0.937 0.987
12.3 1.255 1. 236 1.275 1.226 1.285 5.0 0.961 0.946 0.976 0.936 0.986
13.3 1.253 1. 233 1.272 1.223 1.282 5.4 0.960 0.945 0.975 0.935 0.985
14.2 1. 250 1.230 1.269 1.220 1.279 5.8 0.959 0.944 0.974 0.934 0.984
STATIC RippleRipple
Min Max Min Max Mi n Max Min Ma x
Figure 3-6. Illustration of Deep Sleep State V
Lowest-Frequency Mode (VID = 0.988V): Deep Sleep
1.010
1.000
0.990
0.980
0.976
0.970
0.960
0.950
0.940
0.930
0.01.02.03.04.05.0
STATIC Stat ic M in Static Max Ripple Min Ripple Max
Static and Ripple Tolerances (LFM- VID#C)
CC
36 Datasheet
Electrical Specifications
Table 3-14. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#D
MODE
ACTIVE
Highest Frequency Mode: VID=1.276V, Offset=0% Lowest Frequency Mode: VID=0.988V, Offset=0%
I
, A VCC, V
CC
0 1.276 1.257 1.295 1.247 1.305 0.0 0.988 0.973 1.003 0.963 1.013
0.9 1.273 1.254 1.292 1.244 1.302 0.4 0.987 0.972 1.002 0.962 1.012
1.9 1.270 1.251 1.290 1.241 1.300 0.9 0.985 0.971 1.000 0.961 1.010
2.8 1.268 1.249 1.287 1.239 1.297 1.3 0.984 0.969 0.999 0.959 1.009
3.7 1.265 1.246 1.284 1.236 1.294 1.7 0.983 0.968 0.998 0.958 1.008
4.6 1.262 1.243 1.281 1.233 1.291 2.1 0.982 0.967 0.996 0.957 1.006
5.6 1.259 1.240 1.278 1.230 1.288 2.6 0.980 0.966 0.995 0.956 1.005
6.5 1.257 1.237 1.276 1.227 1.286 3.0 0.979 0.964 0.994 0.954 1.004
7.4 1.254 1.235 1.273 1.225 1.283 3.4 0.978 0.963 0.993 0.953 1.003
8.3 1.251 1.232 1.270 1.222 1.280 3.8 0.976 0.962 0.991 0.952 1.001
9.3 1.248 1.229 1.267 1.219 1.277 4.3 0.975 0.960 0.990 0.950 1.000
10.2 1.245 1.226 1.265 1.216 1.275 4.7 0.974 0.959 0.989 0.949 0.999
11.1 1.243 1.224 1.262 1.214 1.272 5.1 0.973 0.958 0.987 0.948 0.997
12.0 1.240 1.221 1.259 1.211 1.269 5.5 0.971 0.957 0.986 0.947 0.996
13.0 1.237 1.218 1.256 1.208 1.266 6.0 0.970 0.955 0.985 0.945 0.995
13.9 1.234 1.215 1.253 1.205 1.263 6.4 0.969 0.954 0.984 0.944 0.994
14.8 1.232 1.212 1.251 1.202 1.261 6.8 0.968 0.953 0.982 0.943 0.992
15.7 1.229 1.210 1.248 1.200 1.258 7.2 0.966 0.951 0.981 0.941 0.991
16.7 1.226 1.207 1.245 1.197 1.255 7.7 0.965 0.950 0.980 0.940 0.990
17.6 1.223 1.204 1.242 1.194 1.252
18.5 1.220 1.201 1.240 1.191 1.250 8.6 0.818 0.806 0.831 0.796 0.841
19.4 1.218 1.199 1.237 1.189 1.247 9.1 0.817 0.804 0.829 0.794 0.839
20.4 1.215 1.196 1.234 1.186 1.244 9.6 0.815 0.803 0.828 0.793 0.838
21.3 1.212 1.193 1.231 1.183 1.241 10.1 0.814 0.801 0.826 0.791 0.836
22.2 1.209 1.190 1.228 1.180 1.238 11.935 0.808 0.796 0.821 0.786 0.831
23.1 1.207 1.187 1.226 1.177 1.236 12.435 0.807 0.794 0.819 0.784 0.829
24.1 1.204 1.185 1.223 1.175 1.233 12.935 0.805 0.793 0.818 0.783 0.828
25.0 1.201 1.182 1.220 1.172 1.230
STATIC Ripple
Min Max Min Max Min Max Min Max
ICC, A VCC, V
8.1 0.964 0.949 0.979 0.939 0.989
13.435 0.804 0.791 0.816 0.781 0.826
STATIC
Ripple
Figure 3-7. Illustration of Act iv e State V
Static and Ripple Tolerances (HFM- VID#D)
CC
Highest-Frequenc y M ode (VID = 1.276V) : Act ive
1.320
1.300
1.280
1.276
1.260
1.240
VCC, V
1.220
1.200
1.180
1.160 0 5 10 15 20 25
ICC, A
STATIC Static Min St at ic Max Ripple Min Ripple Max
Datasheet 37
Electrical Specifications
Table 3-15. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#D
Lowest Frequency Mode: VID=0.988V, Off set=-1.2%
, A VCC, V
I
CC
STATIC
MODE
Highest Frequency Mode: VI D=1.276V, Offset=-1.2%
I
, A VCC, V
CC
STATIC
MinMaxMinMax MinMaxMinMax
0.0 1. 261 1.242 1. 280 1. 232 1. 290 0.0 0.976 0. 961 0. 991 0.951 1. 001
0.9 1. 258 1.239 1. 277 1. 229 1. 287 0.4 0.975 0. 960 0. 990 0.950 1. 000
1.9 1. 255 1.236 1. 274 1. 226 1. 284 0.8 0.974 0. 959 0. 989 0.949 0. 999
2.8 1. 252 1.233 1. 271 1. 223 1. 281 1.2 0.973 0. 958 0. 987 0.948 0. 997
3.8 1. 249 1.230 1. 268 1. 220 1. 278 1.5 0.972 0. 957 0. 986 0.947 0. 996
4.7 1. 246 1.227 1. 266 1. 217 1. 276 1.9 0.970 0. 956 0. 985 0.946 0. 995
5.7 1. 244 1.225 1. 263 1. 215 1. 273 2.3 0.969 0. 954 0. 984 0.944 0. 994
6.6 1. 241 1.222 1. 260 1. 212 1. 270 2.7 0.968 0. 953 0. 983 0.943 0. 993
7.6 1. 238 1.219 1. 257 1. 209 1. 267 3.1 0.967 0. 952 0. 982 0.942 0. 992
Deep Sleep
8.5 1. 235 1.216 1. 254 1. 206 1. 264 3.5 0.966 0. 951 0. 981 0.941 0. 991
9.5 1. 232 1.213 1. 251 1. 203 1. 261 3.9 0.965 0. 950 0. 979 0.940 0. 989
10.4 1.229 1.210 1. 249 1. 200 1. 259 4. 3 0.963 0.949 0. 978 0. 939 0. 988
11.4 1.227 1.207 1. 246 1. 197 1. 256 4. 6 0.962 0.947 0. 977 0. 937 0. 987
12.3 1.224 1.205 1. 243 1. 195 1. 253 5. 0 0.961 0.946 0. 976 0. 936 0. 986
13.3 1.221 1.202 1. 240 1. 192 1. 250 5. 4 0.960 0.945 0. 975 0. 935 0. 985
14.2 1.218 1.199 1. 237 1. 189 1.247 5.8 0.959 0.944 0.974 0.934 0.984
RippleRipple
Figure 3-8. Illustration of Deep Sleep State V
Lowest-Freque ncy Mode (VID = 0.988V): Dee p S le ep
1.010
1.000
0.990
0.980
0.976
0.970
0.960
0.950
0.940
0.930
0.0 1.0 2.0 3.0 4.0 5.0
STATIC Static Min Static Max Ripple Min Ripple Max
Static and Ripple Tolerances (LFM- VID#D)
CC
38 Datasheet
Electrical Specifications
V
Table 3-16. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#E
MODE
ACTIVE
Highest Frequency Mode: VID=1.356V, Offset=0% Lowest Frequency Mode: VID=0.988V, Offset=0%
, A VCC, V
I
CC
0 1.356 1.336 1.376 1.326 1.386 0.0 0.988 0.973 1.003 0.963 1.013
0.9 1.353 1.333 1.374 1.323 1.384 0.4 0.987 0.972 1.002 0.962 1.012
1.9 1.350 1.330 1.371 1.320 1.381 0.9 0.985 0.971 1.000 0.961 1.010
2.8 1.348 1.327 1.368 1.317 1.378 1.3 0.984 0.969 0.999 0.959 1.009
3.7 1.345 1.325 1.365 1.315 1.375 1.7 0.983 0.968 0.998 0.958 1.008
4.6 1.342 1.322 1.362 1.312 1.372 2.1 0.982 0.967 0.996 0.957 1.006
5.6 1.339 1.319 1.360 1.309 1.370 2.6 0.980 0.966 0.995 0.956 1.005
6.5 1.337 1.316 1.357 1.306 1.367 3.0 0.979 0.964 0.994 0.954 1.004
7.4 1.334 1.313 1.354 1.303 1.364 3.4 0.978 0.963 0.993 0.953 1.003
8.3 1.331 1.311 1.351 1.301 1.361 3.8 0.976 0.962 0.991 0.952 1.001
9.3 1.328 1.308 1.349 1.298 1.359 4.3 0.975 0.960 0.990 0.950 1.000
10.2 1.325 1.305 1.346 1.295 1.356 4.7 0.974 0.959 0.989 0.949 0.999
11.1 1.323 1.302 1.343 1.292 1.353 5.1 0.973 0.958 0.987 0.948 0.997
12.0 1.320 1.300 1.340 1.290 1.350 5.5 0.971 0.957 0.986 0.947 0.996
13.0 1.317 1.297 1.337 1.287 1.347 6.0 0.970 0.955 0.985 0.945 0.995
13.9 1.314 1.294 1.335 1.284 1.345 6.4 0.969 0.954 0.984 0.944 0.994
14.8 1.312 1.291 1.332 1.281 1.342 6.8 0.968 0.953 0.982 0.943 0.992
15.7 1.309 1.288 1.329 1.278 1.339 7.2 0.966 0.951 0.981 0.941 0.991
16.7 1.306 1.286 1.326 1.276 1.336 7.7 0.965 0.950 0.980 0.940 0.990
17.6 1.303 1.283 1.324 1.273 1.334
18.5 1.300 1.280 1.321 1.270 1.331 8.6 0.818 0.806 0.831 0.796 0.841
19.4 1.298 1.277 1.318 1.267 1.328 9.1 0.817 0.804 0.829 0.794 0.839
20.4 1.295 1.275 1.315 1.265 1.325 9.6 0.815 0.803 0.828 0.793 0.838
21.3 1.292 1.272 1.312 1.262 1.322 10.1 0.814 0.801 0.826 0.791 0.836
22.2 1.289 1.269 1.310 1.259 1.320 11.935 0.80 8 0.796 0.821 0.786 0.831
23.1 1.287 1.266 1.307 1.256 1.317 12.435 0.80 7 0.794 0.819 0.784 0.829
24.1 1.284 1.263 1.304 1.253 1.314 12.935 0.80 5 0.793 0.818 0.783 0.828
25.0 1.281 1.261 1.301 1.251 1.311
STATIC Ripple
Min Max Min Max Min Max Min Max
ICC, A VCC, V
8.1 0.964 0.949 0.979 0.939 0.989
13.435 0.804 0.79 1 0.816 0.781 0.826
STATIC
Ripple
Figure 3-9. Illustration of Act iv e State V
Static and Ripple Tolerances (HFM- VID#E)
CC
Highest-Frequency Mode (VID = 1.356V): Active
1.400
1.356
1.350
1.300
VCC,
1.250
1.200 0 5 10 15 20 25
ICC, A
STATIC St atic Min Static Max Ripple Min Ripple Max
Datasheet 39
Electrical Specifications
Table 3-17. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#E
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%
ICC, A VCC, V
STATIC
MODE
Highest Frequency Mode: VI D=1.356V, Off set=-1.2%
I
, A VCC, V
CC
STATIC RippleRi pple
MinMaxMinMax MinMaxMinMax
0.0 1. 340 1. 319 1. 360 1. 309 1.370 0. 0 0. 976 0. 961 0. 991 0.951 1. 001
0.9 1. 337 1. 317 1. 357 1. 307 1.367 0. 4 0. 975 0. 960 0. 990 0.950 1. 000
1.9 1. 334 1. 314 1. 354 1. 304 1.364 0. 8 0. 974 0. 959 0. 989 0.949 0. 999
2.8 1. 331 1. 311 1. 352 1. 301 1.362 1. 2 0. 973 0. 958 0. 987 0.948 0. 997
3.8 1. 328 1. 308 1. 349 1. 298 1.359 1. 5 0. 972 0. 957 0. 986 0.947 0. 996
4.7 1. 326 1. 305 1. 346 1. 295 1.356 1. 9 0. 970 0. 956 0. 985 0.946 0. 995
5.7 1. 323 1. 302 1. 343 1. 292 1.353 2. 3 0. 969 0. 954 0. 984 0.944 0. 994
6.6 1. 320 1. 300 1. 340 1. 290 1.350 2. 7 0. 968 0. 953 0. 983 0.943 0. 993
7.6 1. 317 1. 297 1. 337 1. 287 1.347 3. 1 0. 967 0. 952 0. 982 0.942 0. 992
Deep Sleep
8.5 1. 314 1. 294 1. 335 1. 284 1.345 3. 5 0. 966 0. 951 0. 981 0.941 0. 991
9.5 1. 311 1. 291 1. 332 1. 281 1.342 3. 9 0. 965 0. 950 0. 979 0.940 0. 989
10.4 1.308 1.288 1.329 1. 278 1. 339 4. 3 0.963 0. 949 0 .978 0.939 0. 988
11.4 1.306 1.285 1.326 1. 275 1. 336 4. 6 0.962 0. 947 0 .977 0.937 0. 987
12.3 1.303 1.282 1.323 1. 272 1. 333 5. 0 0.961 0. 946 0 .976 0.936 0. 986
13.3 1.300 1.280 1.320 1. 270 1. 330 5. 4 0.960 0. 945 0 .975 0.935 0. 985
14.2 1.297 1.277 1.317 1.267 1.327 5.8 0. 959 0.944 0.974 0.934 0.984
Figure 3-10. Illustration of Deep Sleep State V
Lowest-Freque ncy Mode (VID = 0.988V): Deep Sleep
1.010
1.000
0.990
0.980
0.976
0.970
0.960
0.950
0.940
0.930
0.0 1.0 2.0 3.0 4.0 5.0
STATIC Static Min Static Max Ripple Min Ripple Max
Static and Ripple Tolerances (LFM- VID#E)
CC
40 Datasheet
Electrical Specifications
Table 3-18. Voltage Tolerances for the Intel® Pentium® M Processor LV (Active State)
MODE
Highest Frequency Mode: VID=1.116V, Offset=0% Lowest Frequency Mode: VID=0.988V, Offset=0%
, A VCC, V
I
CC
0 1.116 1.099 1.133 1.089 1.14 3 0.0 0. 988 0.973 1. 003 0.963 1. 013
0.4 1.115 1.098 1.131 1. 088 1.141 0. 4 0.987 0. 972 1.002 0. 962 1.012
0.9 1.113 1.097 1.130 1. 087 1.140 0. 9 0.985 0. 971 1.000 0. 961 1.010
1.3 1.112 1.095 1.129 1. 085 1.139 1. 3 0.984 0. 969 0.999 0. 959 1.009
1.8 1.111 1.094 1.127 1. 084 1.137 1. 7 0.983 0. 968 0.998 0. 958 1.008
2.2 1.109 1.093 1.126 1. 083 1.136 2. 1 0.982 0. 967 0.996 0. 957 1.006
2.7 1.108 1.091 1.125 1. 081 1.135 2. 6 0.980 0. 966 0.995 0. 956 1.005
3.1 1.107 1.090 1.123 1. 080 1.133 3. 0 0.979 0. 964 0.994 0. 954 1.004
3.6 1.105 1.089 1.122 1. 079 1.132 3. 4 0.978 0. 963 0.993 0. 953 1.003
4.0 1.104 1.087 1.121 1. 077 1.131 3. 8 0.976 0. 962 0.991 0. 952 1.001
4.4 1.103 1.086 1.119 1. 076 1.129 4. 3 0.975 0. 960 0.990 0. 950 1.000
4.9 1.101 1.085 1.118 1. 075 1.128 4. 7 0.974 0. 959 0.989 0. 949 0.999
5.3 1.100 1.083 1.117 1. 073 1.127 5. 1 0.973 0. 958 0.987 0. 948 0.997
5.8 1.099 1.082 1.115 1. 072 1.125 5. 5 0.971 0. 957 0.986 0. 947 0.996
6.2 1.097 1.081 1.114 1. 071 1.124 6. 0 0.970 0. 955 0.985 0. 945 0.995
ACTIVE
6.7 1.096 1.079 1.113 1. 069 1.123 6. 4 0.969 0. 954 0.984 0. 944 0.994
7.1 1.095 1.078 1.111 1. 068 1.121 6. 8 0.968 0. 953 0.982 0. 943 0.992
7.6 1.093 1.077 1.110 1. 067 1.120 7. 2 0.966 0. 951 0.981 0. 941 0.991
8.0 1.092 1.075 1.109 1. 065 1.119 7. 7 0.965 0. 950 0.980 0. 940 0.990
8.4 1.091 1.074 1.107 1.064 1.117
8.9 1.089 1.073 1.106 1.063 1.116
9.3 1.088 1.071 1.105 1.061 1.115
9.8 1.087 1.070 1.103 1.060 1.113
10.2 1.085 1.069 1.102 1.059 1.11 2
10.7 1.084 1.067 1.101 1.057 1.11 1
11.1 1.083 1.066 1.099 1.056 1.10 9
11.6 1.081 1.065 1.098 1.055 1.10 8
12.0 1.080 1.063 1.097 1.053 1.107
STATIC Ripple
Min Max Min Max Min Max Min Max
ICC, A VCC, V
8.1 0.964 0.949 0.979 0.939 0.989
STATIC
Ripple
Datasheet 41
Electrical Specifications
Table 3-19. Voltage Tolerances for the Intel® Pentium® M Processor LV (Deep Sleep State)
Highest Frequency Mode: VID=1.116V, Off set=-1.2%
MODE
, A VCC, V
I
CC
STATIC Ripple
Min Max Min Max Min Max Min Max
0.0 1.103 1.086 1.119 1.076 1.129 0.0 0.976 0. 961 0.991 0.951 1. 001
0.4 1.101 1.085 1.118 1.075 1.128 0.4 0.975 0. 960 0.990 0.950 1. 000
0.8 1.100 1.083 1.117 1.073 1.127 0.8 0.974 0. 959 0.989 0.949 0. 999
1.2 1.099 1.082 1.116 1.072 1.126 1.2 0.973 0. 958 0.987 0.948 0. 997
1.6 1.098 1.081 1.114 1.071 1.124 1.5 0.972 0. 957 0.986 0.947 0. 996
2.0 1.097 1.080 1.113 1.070 1.123 1.9 0.970 0. 956 0.985 0.946 0. 995
2.4 1.095 1.079 1.112 1.069 1.122 2.3 0.969 0. 954 0.984 0.944 0. 994
2.8 1.094 1.077 1.111 1.067 1.121 2.7 0.968 0. 953 0.983 0.943 0. 993
3.3 1.093 1.076 1.110 1.066 1.120 3.1 0.967 0. 952 0.982 0.942 0. 992
Deep Sleep
3.7 1.092 1.075 1.108 1.065 1.118 3.5 0.966 0. 951 0.981 0.941 0. 991
4.1 1.090 1.074 1.107 1.064 1.117 3.9 0.965 0. 950 0.979 0.940 0. 989
4.5 1.089 1.072 1.106 1.062 1.116 4.3 0.963 0. 949 0.978 0.939 0. 988
4.9 1.088 1.071 1.105 1.061 1.115 4.6 0.962 0. 947 0.977 0.937 0. 987
5.3 1.087 1.070 1.103 1.060 1.113 5.0 0.961 0. 946 0.976 0.936 0. 986
5.7 1.086 1.069 1.102 1.059 1.112 5.4 0.960 0. 945 0.975 0.935 0. 985
6.1 1.084 1.068 1.101 1.058 1.111 5.8 0.959 0.944 0.974 0.934 0.984
Table 3-20. Voltage Tolerances for the Intel
MODE
Highest Frequency Mode: VID=0.940V, Offset=0% Lowest Frequency Mode: VID=0.812V, Offset=0%
I
, A VCC, V
CC
0 0.940 0.926 0.954 0.916 0.964 0.0 0. 812 0.799 0.825 0.789 0. 835
0.3 0.939 0.925 0.953 0.915 0. 963 0.2 0.811 0.799 0. 824 0.789 0.834
0.5 0.938 0.924 0.953 0.914 0. 963 0.4 0.811 0.798 0. 823 0.788 0.833
0.8 0.938 0.924 0.952 0.914 0. 962 0.6 0.810 0.797 0. 823 0.787 0.833
1.0 0.937 0.923 0.951 0.913 0. 961 0.8 0.809 0.797 0. 822 0.787 0.832
1.3 0.936 0.922 0.950 0.912 0. 960 1.1 0.809 0.796 0. 822 0.786 0.832
1.6 0.935 0.921 0.949 0.911 0. 959 1.3 0.808 0.796 0. 821 0.786 0.831
1.8 0.935 0.920 0.949 0.910 0. 959 1.5 0.808 0.795 0. 820 0.785 0.830
2.1 0.934 0.920 0.948 0.910 0. 958 1.7 0.807 0.794 0. 820 0.784 0.830
2.3 0.933 0.919 0.947 0.909 0. 957 1.9 0.806 0.794 0. 819 0.784 0.829
2.6 0.932 0.918 0.946 0.908 0. 956 2.1 0.806 0.793 0. 818 0.783 0.828
2.9 0.931 0.917 0.946 0.907 0. 956 2.3 0.805 0.792 0. 818 0.782 0.828
3.1 0.931 0.917 0.945 0.907 0. 955 2.5 0.804 0.792 0. 817 0.782 0.827
3.4 0.930 0.916 0.944 0.906 0. 954 2.7 0.804 0.791 0. 816 0.781 0.826
3.6 0.929 0.915 0.943 0.905 0. 953 2.9 0.803 0.790 0. 816 0.780 0.826
ACTIVE
3.9 0.928 0.914 0.942 0.904 0. 952 3.2 0.803 0.790 0. 815 0.780 0.825
4.1 0.928 0.913 0.942 0.903 0. 952 3.4 0.802 0.789 0. 815 0.779 0.825
4.4 0.927 0.913 0.941 0.903 0. 951 3.6 0.801 0.789 0. 814 0.779 0.824
4.7 0.926 0.912 0.940 0.902 0. 950 3.8 0.801 0.788 0. 813 0.778 0.823
4.9 0.925 0.911 0.939 0.901 0. 949
5.2 0.924 0.910 0.939 0.900 0. 949 4.5 0.831 0.818 0. 843 0.808 0.853
5.4 0.924 0.910 0.938 0.900 0. 948 5 0.829 0.816 0.842 0.806 0.852
5.7 0.923 0.909 0.937 0.899 0. 947 5.5 0.828 0.815 0. 840 0.805 0.850
6.0 0.922 0.908 0.936 0.898 0. 946 6 0.826 0.813 0.839 0.803 0.849
6.2 0.921 0.907 0.935 0.897 0. 945 11.935 0.808 0.796 0.821 0.786 0.831
6.5 0.921 0.906 0.935 0.896 0. 945 12.435 0.807 0.794 0.819 0.784 0.829
6.7 0.920 0.906 0.934 0.896 0. 944 12.935 0.805 0.793 0.818 0.783 0.828
7.0 0.919 0.905 0.933 0.895 0.943
STATIC Ripple
MinMaxMinMax MinMaxMinMax
Lowest Frequency Mode: VID=0.988V, Offset=-1.2%
ICC, A VCC, V
®
Pentium® M Processor ULV (Active State)
ICC, A VCC, V
4.0 0.800 0.787 0.813 0.777 0.823
13.435 0.804 0.791 0.816 0.781 0.826
STATIC Ripple
STATIC
Ripple
42 Datasheet
Electrical Specifications
Table 3-21. Voltage Tolerances for the Intel® Pentium® M Processor ULV (Deep Sleep State)
Highest Frequency Mode: VID=0. 940V, Offset=-1.2%
MODE
, A VCC, V
I
CC
0.0 0. 929 0. 915 0. 943 0.905 0. 953 0. 0 0. 802 0. 758 0.847 0. 757 0. 848
0.2 0. 928 0. 914 0. 942 0.904 0. 952 0. 1 0. 802 0. 757 0.847 0. 756 0. 847
0.4 0. 928 0. 913 0. 942 0.903 0. 952 0. 3 0. 801 0. 757 0.846 0. 756 0. 847
0.6 0. 927 0. 913 0. 941 0.903 0. 951 0. 4 0. 801 0. 756 0.846 0. 756 0. 847
0.8 0. 926 0. 912 0. 940 0.902 0. 950 0. 5 0. 801 0. 756 0.845 0. 755 0. 846
1.0 0. 926 0. 912 0. 940 0.902 0. 950 0. 7 0. 800 0. 756 0.845 0. 755 0. 846
1.2 0. 925 0. 911 0. 939 0.901 0. 949 0. 8 0. 800 0. 755 0.845 0. 754 0. 845
1.4 0. 925 0. 910 0. 939 0.900 0. 949 0. 9 0. 799 0. 755 0.844 0. 754 0. 845
1.6 0. 924 0. 910 0. 938 0.900 0. 948 1. 1 0. 799 0. 754 0.844 0. 754 0. 845
Deep Sleep
1.8 0. 923 0. 909 0. 937 0.899 0. 947 1. 2 0. 799 0. 754 0.843 0. 753 0. 844
2.0 0. 923 0. 909 0. 937 0.899 0. 947 1. 3 0. 798 0. 754 0.843 0. 753 0. 844
2.2 0. 922 0. 908 0. 936 0.898 0. 946 1. 5 0. 798 0. 753 0.843 0. 752 0. 843
2.4 0. 922 0. 907 0. 936 0.897 0. 946 1. 6 0. 797 0. 753 0.842 0. 752 0. 843
2.6 0. 921 0. 907 0. 935 0.897 0. 945 1. 7 0. 797 0. 752 0.842 0. 752 0. 843
2.8 0. 920 0. 906 0. 934 0.896 0. 944 1. 9 0. 797 0. 752 0.841 0. 751 0. 842
3.0 0. 920 0.906 0.934 0. 896 0.944 2. 0 0.796 0.752 0. 841 0.751 0. 842
STATIC Ri pple
MinMaxMinMax MinMaxMinMax
Figure 3-11. Active VCC and ICC Load Line
Lowest Frequency Mode: VID=0. 812V, Offset=-1.2%
ICC, A VCC, V
STATIC Ri pple
V
Max {HFM | LFM}
CC
V
Max {HFM | LFM}
CC, DC
V
Nom {HFM | LFM}
CC
V
Min {HFM | LFM}
CC, DC
V
Min {HFM | LFM}
CC
V
CC
[V]
Slope= -3.0 mV/A
+/-1.5% from Nominal =VR Error
0
10mV= RIPPLE
I
max
CC
{HFM | LFM}
I
CC
[A]
Datasheet 43
Electrical Specifications
Figure 3-12. Deep Sleep VCC and ICC Load Line
V
CC
[V]
Slope= -3.0 mV/A
Vcc nom {HFM | LFM}
- 1.2%
+/-1.5% from Nominal =VR Error
0
Table 3-22. FSB Differential BCLK Specifications
Symbol Parameter Min Typ Max Unit Notes
10mV= RIPPLE
I
max
CC
Deep Sleep {HFM | LFM}
I
[A]
CC
1
V
L
V
H
V
CROSS
V
CROSS
V
TH
LI Input Leakage Current ± 100 µA 4
I
Input Low Voltage 0 V Input High Voltage 0.660 0.710 0.850 V Crossing Voltage 0.25 0.35 0.55 V 2 Range of Crossing Points N/A N/A 0.140 V 6
Threshold Region V
-0.100 V
CROSS
+0.100 V 3
CROSS
Cpad Pad Capacitance 1.8 2.3 2.75 pF 5
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of BCLK1.
3. Threshold Region is defined as a region entered about the crossing voltage in which the differential receiver switches. It includes input threshold hysteresis.
4. For Vin between 0 V and V
5. Cpad includes die capacitance only. No package parasitics are included.
.
H
6. VCROSS is defined as the total variation of all crossing voltages as defined in note 2
44 Datasheet
Table 3-23. AGTL+ Signal Group DC Specifications
Symbol Parameter Min Typ Max Unit Notes
VCCP I/O Voltage 0.997 1.05 1.102 V
GTLREF Reference Voltage 2/3 VCCP - 2%2/3 VCCP 2/3 VCCP + 2%V6
IH Input High Voltage GTLREF+0.1 VCCP+0.1 V 3,6
V
IL Input Low Voltage -0.1 GTLREF-0.1 V 2,4
V
OH Output High Voltage VCCP 6
V
R
ON Buffer On Resistance 17.7 24.7 32.9
R
I
LI Input Leakage Current ± 100 µA 8
Cpad Pad Capacitance 1.8 2.3 2.75 pF 9
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
IL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
2. V
IH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high
3. V value.
IH and VOH may experience excursions above VCCP. However, input signal drivers must comply with the
4. V signal quality specifications in Chapter 3.
5. This is the pull down driver resistance. Refer to processor I/O buffer models for I/V characteristics. Measured at 0.31*VCCP. R
6. GTLREF should be generated from VCCP with a 1% tolerance resistor divider . The VCCP referred to in these specifications is the instantaneous VCCP.
7. R
TT
0.31*VCCP. R
8. Specified with on die R
9. Cpad includes die capacitance only. No package parasitics are included.
Termination Resistance 47 55 63 7
TT
(min) = 0.38*R
ON
TT,
R
(typ) = 0.45*R
ON
is the on-die termination resistance measured at VOL of the AGTL+ output driver. Measured at
is connected to VCCP on die. Refer to processor I/O buffer models for I/V characteristics.
TT
TT
and R
are turned off.
ON
TT,
R
ON
Electrical Specifications
(max) = 0.52*R
TT.
1
5
Table 3-24. CMOS Signal Group DC Specifications
Symbol Parameter Min Typ Max Unit Notes
VCCP I/O Voltage 0.997 1.05 1.102 V
IL Input Low Voltage
V
IH Input High Voltage 0.7*VCCP VCCP+0.1 V 2
V
OL Output Low Voltage -0.1 0 0.1*VCCP V 2
V
OH Output High Voltage 0.9*VCCP VCCP VCCP+0.1 V 2
V
OL Output Low Current 1.49 4.08 mA 4
I
OH Output High Current 1.49 4.08 mA 5
I
I
LI
Cpad Pad Capacitance 1.0 2.3 3.0 pF
NOTES:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The VCCP referred to in these specifications refers to instantaneous VCCP.
3. Refer to the processor I/O buffer models for I/V characteristics.
4. Measured at 0.1*VCCP.
5. Measured at 0.9*VCCP.
6. For Vin between 0 V and VCCP. Measured when the driver is tristated.
7. Cpad includes die capacitance only. No package parasitics are included
CMOS
Leakage Current ± 100 µA 6
1
-0.1 0.3*VCCP V 2, 3
Datasheet 45
Electrical Specifications
Table 3-25. Open Drain Signal Group DC Specifications
Symbol Parameter Min Typ Max Unit Notes
VOH Output High Voltage VCCP V 3
OL Output Low Voltage 0 0.20 V
V
OL Output Low Current 16 50 mA 2
I
I
LO
Cpad Pad Capacitance 1.7 2.3 3.0 pF 5
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. Measured at 0.2 V. is determined by value of the external pullup resistor to VCCP. Please refer to the platform design guides
3. V
OH
for details.
4. For Vin between 0 V and V
5. Cpad includes die capacitance only. No package parasitics are included.
Leakage Current ± 200 µA 4
.
OH
1
§
46 Datasheet

Package Mechanical Specifications and Pin Information

4 Package Mechanical
Specifications and Pin Information
The Pentium M Processor is available in 478-pin, Micro-FCPGA and 479-ball, Micro-FCBGA packages. Different views of the Micro-FCPGA package are shown in Figure 4-1 through
Figure 4-3. Package dimensions are shown in Table 4-1. Different views of the Micro-FCBGA
package are shown in Figure 4-4 through Figure 4-6. Package dimensions are shown in Table 4-2. The Micro-FCBGA package may have capacitors placed in the area surrounding the die. Because
the die-side capacitors are electrically conductive, and only slightly shorter than the die height, care should be taken to avoid contacting the capacitors with electrically conductive materials. Doing so may short the capacitors, and possibly damage the device or render it inactive. The use of an insulating material between the capacitors and any thermal solution should be considered to prevent capacitor shorting.
Figure 4-1. Micro-FCPGA Package Top and Bottom Isometric Views
PACKAGE KEEPOUT
CAPACITOR AREA
DIE
LABEL
TOP VIEW BOTT OM VIEW
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-1 for details.
Datasheet 47
Package Mechanical Specifications and Pin Information
Figure 4-2. Micro-FCPGA Package - Top and Side Views
7 (K1)
7 (K1) 8 places
8 places
D1
D1
5 (K)
5 (K) 4 places
4 places
SUBSTRATE KEEPOUT ZONE
SUBSTRATE KEEPOUT ZONE DO NOT CONTACT PACKAGE
DO NOT CONTACT PACKAGE IN S ID E T HIS LINE
IN S ID E T HIS LINE
35 (D)
35 (D)
0.286
0.286 0.286
A
A
1.25 MAX
1.25 MAX (A3)
(A3)
Ø 0.32 (B)
Ø 0.32 (B) 478 places
478 places
A2
E1
E1
35 (E)
35 (E)
A2
PIN A1 CORNER
PIN A1 CORNER
2.03 ±0.08
2.03 ±0.08 (A1)
(A1)
NOTE: MDie is centered on the Package. All dimensions in millimeters. Values shown for reference only. Refer
to Table 4-1 for details.
48 Datasheet
Package Mechanical Specifications and Pin Information
Figure 4-3. Micro-FCPGA Package - Bottom View
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
25X 1.27
(e)
1
5 7 9 11
234 6 8 10 12 14 16 18
25X 1.27
(e)
14 (K3)
13 15 17
19 21 23 25
22 24 26
20
14 (K3)
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-1 for details.
Datasheet 49
Package Mechanical Specifications and Pin Information
Table 4-1. Micro-FCPGA Package Dimensions
Symbol Parameter Min Max Unit
A Overall height, top of die to package seating plane 1.88 2.02 mm – Overall height, top of die to PCB surface, including
socket (Refer to Note 1) A1 Pin length 1.95 2.11 mm A2 Die height 0.820 mm A3 Pin-side capacitor height 1.25 mm
B Pin diameter 0.28 0.36 mm D Package substrate length 34.9 35.1 mm E Package substrate width 34.9 35.1 mm
D1 Die length 12.54 mm
E1 Die width 6.99 mm
e Pin Pitch 1.27 mm
K Package edge keep-out 5 mm K1 Package corner keep-out 7 mm K3 Pin-side capacitor boundary 14 mm
N Pin count 478 each
Pdie Allowable pressure on the die for thermal solution 689 kPa
W Package weight 4.5 g
Package Surface Flatness
4.74 5.16 mm
0.286 mm
NOTE: Overall height with socket is based on design dimensions of the Micro-FCPGA package with no thermal
solution attached. Values are based on design specifications and tolerances. This dimension is subject to change based on socket design, OEM motherboard design or OEM SMT process.
50 Datasheet
Package Mechanical Specifications and Pin Information
Figure 4-4. Micro-FCBGA Package Top and Bottom Isometric Views
PACKAGE KEEPOUT
CAPACITOR AREA
LABEL
DIE
TOP VIEW BOTTOM VIEW
Datasheet 51
Package Mechanical Specifications and Pin Information
Figure 4-5. Micro-FCBGA Package Top and Side Views
7 (K1) 8 places
D1
5 (K) 4 places
E1
SUBSTRATE KEEPOUT ZONE DO NOT CONTACT PACKAGE INSIDE T HIS LI NE
35 (D)
A2
K2
0.20
A
Ø 0.78 (b) 479 places
35 (E)
NOTE: Die is centered on the Package. All dimensions in millimeters. Values shown for reference only . Refer to
Table 4-2 for details.
PIN A1 CORNER
52 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-2. Micro-FCBGA Package Dimensions
Symbol Parameter Min Max Unit
A Overall height, as delivered (Refer to Note 1) 2.60 2.85 mm
A2 Die height 0.82 mm
b Ball diameter 0.78 mm D Package substrate length 34.9 35.1 mm E Package substrate width 34.9 35.1 mm
D1 Die length 12.54 mm
E1 Die width 6.99 mm
e Ball Pitch 1.27 mm K Package edge keep-out 5 mm
K1 Package corner keep-out 7 mm K2 Die-side capacitor height 0.7 mm
S Package edge to first ball center 1.625 mm N Ball count 479 each
Solder ball coplanarity 0.2 mm
Pdie Allowable pressure on the die for thermal solution 689 kPa
W Package weight 4.5 g
NOTE: Overall height as delivered. Values are based on design specifications and tolerances. This dimension
is subject to change based on OEM motherboard design or OEM SMT process.
Datasheet 53
Package Mechanical Specifications and Pin Information
Figure 4-6. Micro-FCBGA Package Bottom View
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
25X 1.27
(e)
3
5 7 9 11
2
4 6 8 10 12 14 16 18
25X 1.27
(e)
13 15 17
1.625 (S) 4 places
19 21 23 25
26
22 24
20
1.625 (S) 4 places
NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-2 for details.

4.1 Processor Pinout and Pin List

Figure 4-7 on the next page shows the top view pinout of the Pentium M Processor. The pin list
arranged in two different formats is shown in the following pages.
54 Datasheet
Package Mechanical Specifications and Pin Information
Figure 4-7. The Coordinates of the Processor Pins as V iewed from the Top of the Package
1234567891011121314151617181920212223242526
A
B
VCCA[1]
C
D
E
F
G
RSVD VSS VID[3] VID[4] VCC VSS VCC VSS VSS D[22]# D[17]# VSS
H
J
K
L
M
N
VCCA[2] ADS# VSS BR0# VCCP VSS VCCP VSS VSS D[27]# D[30]# VSS
P
R
T
U
V
W
Y
AA
AB
AC
RSVD
AD
AE
AF
IGNNE# IERR# VSS SLP# DBR# VSS BPM[2]# PRDY# VSS TDO TCK VSS
VSS
VSS SMI# INIT# VSS DPSLP#
RSVD
A20M# RSVD
VSS
LINT0 VSS FERR# LINT1 VSS VCC VSS VCC VSS VCCP VSS VCCP VSS VCCP VSS VCCP VSS VCC VSS VCC VSS VCC VSS D[10]#
PSI# VID[0]
VSS VID[1] VID[2] VSS VSS VCC VSS VCC VSS VCCP VSS VCCP VSS VCCP VSS VCCP VSS VCC VSS VCC VSS
RS[0]# DRDY# VSS VID[5] VSS VCC VSS VCC D[16]# D[20]# VSS D[29]#
VSS LOCK# BPRI# VSS VCC VSS VCC VSS D[23]# VSS D[25]#
RS[1]# VSS HIT# HIT M# VSS VCCP VSS VCC VSS
BNR# RS[2]# VSS
DBSY# TRDY# VSS VSS VCCP VSS VCCP D[24]# VSS D[28]# D[19]#
VSS
VSS
VSS TEST1
PWR
GOOD
DEFER#
CLK#
VCC VSS VCC VSS VCC VSS VCCP VSS VCCP VSS VCCP VSS VCC VSS VCC VSS VCC
VCCP
BPM
VSS PREQ# RES ET # VSS TRST# BCLK1 BCLK0 VSS
[1]#
STP
BPM
BPM
VSS
VSS
VSS TMS TDI VSS BSEL[1] VSS BSEL[0]
[0]#
[3]#
TOP VIEW
REQ
[3]#
A[13]# VSS
A[8]# A[10]# VSS VCCQ[1] VCC VSS
A[12]# VSS A[15]# VSS VCC VSS VCC D[45]# VSS D[47]# D[32]#
COMP
A[30]# A[27]# VSS A[22]#
A[31]# VSS A[29]# A[17]# VSS
REQ
VSS
REQ
VSS
REQ
REQ
[4]#
VSS A[7]# A[5]# VSS VSS VCC VSS VCC D[36]# D[4 2]# VSS D[44]#
VSS A[16]# A[14]# VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC
COMP
[3]
VSS A[20]# A[18]# VSS A[25]# A[19]# VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC D[51]# VSS D[52]# D[49]# VSS D[53]# VCCA[3]
VSS A[23]# A[21]# VSS
A[31]#
A[3]# VSS VCCP VSS VCCP
[1]#
A[6]# VSS VCCP
[0]#
VSS A[ 9]# VSS VCCP VSS VCCP VSS
[2]#
ADSTB
A[4]# VCC VSS VCCP VSS D[35]# VSS D[43]# D[41]#
[0]#
A[11]#
VSS
A[24]#
[2]
VSS VCCP
VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS D[50]# D[48]# VSS
VSS
A[28]# VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS VCC VSS
A[26]#
ADSTB
VCC
VSS
[1]#
SENSE
VSS
RSVD VCC VSS VCC VSS
SENSE
VSS VCC VSS VCC VSS VCC VSS VCC
VCC
vss
ITP_CLK
VCC VSS
ITP_CLK
[1]
THER
VSS
D[0]# VSS D[6]# D[2]# VSS D[4]# D[1]# VSS
MDC
[0]
PROC
THER
VSS D[7]# D[3]# VSS D[13]# D[9]# VSS D[5]#
MDA
VSS DPWR# D[8]# VSS
VCC VSS VCC VSS D[59]# D[55]# VSS
VSS VCC VSS D[58]# VSS D[62]# D[56]# VSS D[61]# D[63]#
DSTBP
[0]#
VSS
VCC TEST2
VCCP VSS D[18]#
VSS D[39]# D[37]# VSS D[38]#
VCC
VSS VSS
VSS
VCC
VSS
DINV
D[60]# VSS D[54]# D[57]# VSS GTLREF
[3]#
VCC
HOT#
THERM
TRIP#
VSS
DSTBN
[0]#
D[14]# D[11]# VSS RSVD
DSTBN
VCCQ[0]
DSTBP
D[40]# D[33]# VSS D[46]#
DSTBN
1234567891011121314151617181920212223242526
VSS D[15]# D[12]#
DINV
[0]#
VSS D[21]# VCCA[0]
DINV
D[31]# VSS
[1]#
DSTBP
VSS D[26]#
[1]#
COMP
COMP
VSS
[0]
DINV
D[34]# VSS
[2]#
DSTBN
[2]#
[2]#
DSTBP
[3]#
[3]#
A
B
C
D
VSS
E
F
G
H
J
[1]#
K
L
M
N
P
[1]
R
T
U
V
W
VSS
Y
AA
AB
AC
AD
AE
VSS
AF
VSS VCC Other
Pin B2 is depopulated on the Micro-FCPGA package
Datasheet 55
Package Mechanical Specifications and Pin Information
This page is intentionally left blank.
56 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-3. Pin Listing by Pin Name
Table 4-3. Pin Listing by Pin Name
Pin Name
A[3]# P4 Source Synch Input/Output A[4]# U4 Source Synch Input/Output A[5]# V3 Source Synch Input/Output A[6]# R3 Source Synch Input/Output A[7]# V2 Source Synch Input/Output A[8]# W1 Source Synch Input/Output A[9]# T4 Source Synch Input/Output A[10]# W2 Source Synch Input/Output A[11]# Y4 Source Synch Input/Output A[12]# Y1 Source Synch Input/Output A[13]# U1 Source Synch Input/Output A[14]# AA3 Source Synch Input/Output A[15]# Y3 Source Synch Input/Output A[16]# AA2 Source Synch Input/Output A[17]# AF4 Source Synch Input/Output A[18]# AC4 Source Synch Input/Output A[19]# AC7 Source Synch Input/Output A[20]# AC3 Source Synch Input/Output A[21]# AD3 Source Synch Input/Output A[22]# AE4 Source Synch Input/Output A[23]# AD2 Source Synch Input/Output A[24]# AB4 Source Synch Input/Output A[25]# AC6 Source Synch Input/Output A[26]# AD5 Source Synch Input/Output A[27]# AE2 Source Synch Input/Output A[28]# AD6 Source Synch Input/Output A[29]# AF3 Source Synch Input/Output A[30]# AE1 Source Synch Input/Output A[31]# AF1 Source Synch Input/Output A20M# C2 CMOS Input ADS# N2 Common Clock Input/Output ADSTB[0]# U3 Source Synch Input/Output ADSTB[1]# AE5 Source Synch Input/Output BCLK[0] B15 Bus Clock Input BCLK[1] B14 Bus Clock Input BNR# L1 Common Clock Input/Output BPM[0]# C8 Common Clock Output
Pin
Number
Signal Buffer
Type
Direction
Pin Name
BPM[1]# B8 Common Clock Output BPM[2]# A9 Common Clock Output BPM[3]# C9 Common Clock Input/Output BPRI# J3 Common Clock Input BR0# N4 Common Clock Input/Output BSEL[1] C14 CMOS Output BSEL[0] C16 CMOS Output COMP[0] P25 Power/Other Input/Output COMP[1] P26 Power/Other Input/Output COMP[2] AB2 Power/Other Input/Output COMP[3] AB1 Power/Other Input/Output D[0]# A19 Source Synch Input/Output D[1]# A25 Source Synch Input/Output D[2]# A22 Source Synch Input/Output D[3]# B21 Source Synch Input/Output D[4]# A24 Source Synch Input/Output D[5]# B26 Source Synch Input/Output D[6]# A21 Source Synch Input/Output D[7]# B20 Source Synch Input/Output D[8]# C20 Source Synch Input/Output D[9]# B24 Source Synch Input/Output D[10]# D24 Source Synch Input/Output D[11]# E24 Source Synch Input/Output D[12]# C26 Source Synch Input/Output D[13]# B23 Source Synch Input/Output D[14]# E23 Source Synch Input/Output D[15]# C25 Source Synch Input/Output D[16]# H23 Source Synch Input/Output D[17]# G25 Source Synch Input/Output D[18]# L23 Source Synch Input/Output D[19]# M26 Source Synch Input/Output D[20]# H24 Source Synch Input/Output D[21]# F25 Source Synch Input/Output D[22]# G24 Source Synch Input/Output D[23]# J23 Source Synch Input/Output D[24]# M23 Source Synch Input/Output D[25]# J25 Source Synch Input/Output D[26]# L26 Source Synch Input/Output
Pin
Number
Signal Buffer
Type
Direction
Datasheet 57
Package Mechanical Specifications and Pin Information
Table 4-3. Pin Listing by Pin Name
Pin Name
D[27]# N24 Source Synch Input/Output D[28]# M25 Source Synch Input/Output D[29]# H26 Source Synch Input/Output D[30]# N25 Source Synch Input/Output D[31]# K25 Source Synch Input/Output D[32]# Y26 Source Synch Input/Output D[33]# AA24 Source Synch Input/Output D[34]# T25 Source Synch Input/Output D[35]# U23 Source Synch Input/Output D[36]# V23 Source Synch Input/Output D[37]# R24 Source Synch Input/Output D[38]# R26 Source Synch Input/Output D[39]# R23 Source Synch Input/Output D[40]# AA23 Source Synch Input/Output D[41]# U26 Source Synch Input/Output D[42]# V24 Source Synch Input/Output D[43]# U25 Source Synch Input/Output D[44]# V26 Source Synch Input/Output D[45]# Y23 Source Synch Input/Output D[46]# AA26 Source Synch Input/Output D[47]# Y25 Source Synch Input/Output D[48]# AB25 Source Synch Input/Output D[49]# AC23 Source Synch Input/Output D[50]# AB24 Source Synch Input/Output D[51]# AC20 Source Synch Input/Output D[52]# AC22 Source Synch Input/Output D[53]# AC25 Source Synch Input/Output D[54]# AD23 Source Synch Input/Output D[55]# AE22 Source Synch Input/Output D[56]# AF23 Source Synch Input/Output D[57]# AD24 Source Synch Input/Output D[58]# AF20 Source Synch Input/Output D[59]# AE21 Source Synch Input/Output D[60]# AD21 Source Synch Input/Output D[61]# AF25 Source Synch Input/Output D[62]# AF22 Source Synch Input/Output D[63]# AF26 Source Synch Input/Output DBR# A7 CMOS Output
Pin
Number
Signal Buffer
Type
Direction
Table 4-3. Pin Listing by Pin Name
Pin Name
DBSY# M2 Common Clock Input/Output DEFER# L4 Common Clock Input DINV[0]# D25 Source Synch Input/Output DINV[1]# J26 Source Synch Input/Output DINV[2]# T24 Source Synch Input/Output DINV[3]# AD20 Source Synch Input/Output DPSLP# B7 CMOS Input DPWR# C19 Common Clock Input DRDY# H2 Common Clock Input/Output DSTBN[0]# C23 Source Synch Input/Output DSTBN[1]# K24 Source Synch Input/Output DSTBN[2]# W25 Source Synch Input/Output DSTBN[3]# AE24 Source Synch Input/Output DSTBP[0]# C22 Source Synch Input/Output DSTBP[1]# L24 Source Synch Input/Output DSTBP[2]# W24 Source Synch Input/Output DSTBP[3]# AE25 Source Synch Input/Output FERR# D3 Open Drain Output GTLREF AD26 Power/Other Input HIT# K3 Common Clock Input/Output HITM# K4 Common Clock Input/Output IERR# A4 Open Drain Output IGNNE# A3 CMOS Input INIT# B5 CMOS Input ITP_CLK[0] A16 CMOS input ITP_CLK[1] A15 CMOS input LINT0 D1 CMOS Input LINT1 D4 CMOS Input LOCK# J2 Common Clock Input/Output PRDY# A10 Common Clock Output PREQ# B10 Common Clock Input PROCHOT# B17 Open Drain Output PSI# E1 CMOS Output PWRGOOD E4 CMOS Input REQ[0]# R2 Source Synch Input/Output REQ[1]# P3 Source Synch Input/Output REQ[2]# T2 Source Synch Input/Output REQ[3]# P1 Source Synch Input/Output
Pin
Number
Signal Buffer
Type
Direction
58 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-3. Pin Listing by Pin Name
Pin Name
REQ[4]# T1 Source Synch Input/Output RESET# B11 Common Clock Input RS[0]# H1 Common Clock Input RS[1]# K1 Common Clock Input RS[2]# L2 Common Clock Input RSVD AF7 Reserved RSVD B2 Reserved RSVD C3 Reserved RSVD E26 Reserved RSVD G1 Reserved RSVD AC1 Reserved SLP# A6 CMOS Input SMI# B4 CMOS Input STPCLK# C6 CMOS Input TCK A13 CMOS Input TDI C12 CMOS Input TDO A12 Open Drain Output TEST1 C5 Test TEST2 F23 Test THERMDA B18 Power/Other THERMDC A18 Power/Other THERMTRIP# C17 Open Drain Output TMS C11 CMOS Input TRDY# M3 Common Clock Input TRST# B13 CMOS Input VCC D6 Power/Other VCC D8 Power/Other VCC D18 Power/Other VCC D20 Power/Other VCC D22 Power/Other VCC E5 Power/Other VCC E7 Power/Other VCC E9 Power/Other VCC E17 Power/Other VCC E19 Power/Other VCC E21 Power/Other VCC F6 Power/Other VCC F8 Power/Other
Pin
Number
Signal Buffer
Type
Direction
Table 4-3. Pin Listing by Pin Name
Pin Name
VCC F18 Power/Other VCC F20 Power/Other VCC F22 Power/Other VCC G5 Power/Other VCC G21 Power/Other VCC H6 Power/Other VCC H22 Power/Other VCC J5 Power/Other VCC J21 Power/Other VCC K22 Power/Other VCC U5 Power/Other VCC V6 Power/Other VCC V22 Power/Other VCC W5 Power/Other VCC W21 Power/Other VCC Y6 Power/Other VCC Y22 Power/Other VCC AA5 Power/Other VCC AA7 Power/Other VCC AA9 Power/Other VCC AA11 Power/Other VCC AA13 Power/Other VCC AA15 Power/Other VCC AA17 Power/Other VCC AA19 Power/Other VCC AA21 Power/Other VCC AB6 Power/Other VCC AB8 Power/Other VCC AB10 Power/Other VCC AB12 Power/Other VCC AB14 Power/Other VCC AB16 Power/Other VCC AB18 Power/Other VCC AB20 Power/Other VCC AB22 Power/Other VCC AC9 Power/Other VCC AC11 Power/Other VCC AC13 Power/Other
Pin
Number
Signal Buffer
Type
Direction
Datasheet 59
Package Mechanical Specifications and Pin Information
Table 4-3. Pin Listing by Pin Name
Pin Name
VCC AC15 Power/Other VCC AC17 Power/Other VCC AC19 Power/Other VCC AD8 Power/Other VCC AD10 Power/Other VCC AD12 Power/Other VCC AD14 Power/Other VCC AD16 Power/Other VCC AD18 Power/Other VCC AE9 Power/Other VCC AE11 Power/Other VCC AE13 Power/Other VCC AE15 Power/Other VCC AE17 Power/Other VCC AE19 Power/Other VCC AF8 Power/Other VCC AF10 Power/Other VCC AF12 Power/Other VCC AF14 Power/Other VCC AF16 Power/Other VCC AF18 Power/Other VCCA[0] F26 Power/Other VCCA[1] B1 Power/Other VCCA[2] N1 Power/Other VCCA[3] AC26 Power/Other VCCP D10 Power/Other VCCP D12 Power/Other VCCP D14 Power/Other VCCP D16 Power/Other VCCP E11 Power/Other VCCP E13 Power/Other VCCP E15 Power/Other VCCP F10 Power/Other VCCP F12 Power/Other VCCP F14 Power/Other VCCP F16 Power/Other VCCP K6 Power/Other VCCP L5 Power/Other
Pin
Number
Signal Buffer
Type
Direction
Table 4-3. Pin Listing by Pin Name
Pin Name
VCCP L21 Power/Other VCCP M6 Power/Other VCCP M22 Power/Other VCCP N5 Power/Other VCCP N21 Power/Other VCCP P6 Power/Other VCCP P22 Power/Other VCCP R5 Power/Other VCCP R21 Power/Other VCCP T6 Power/Other VCCP T22 Power/Other VCCP U21 Power/Other VCCQ[0] P23 Power/Other VCCQ[1] W4 Power/Other VCCSENSE AE7 Power/Other Output VID[0] E2 CMOS Output VID[1] F2 CMOS Output VID[2] F3 CMOS Output VID[3] G3 CMOS Output VID[4] G4 CMOS Output VID[5] H4 CMOS Output VSS A2 Power/Other VSS A5 Power/Other VSS A8 Power/Other VSS A11 Power/Other VSS A14 Power/Other VSS A17 Power/Other VSS A20 Power/Other VSS A23 Power/Other VSS A26 Power/Other VSS B3 Power/Other VSS B6 Power/Other VSS B9 Power/Other VSS B12 Power/Other VSS B16 Power/Other VSS B19 Power/Other VSS B22 Power/Other VSS B25 Power/Other
Pin
Number
Signal Buffer
Type
Direction
60 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-3. Pin Listing by Pin Name
Pin Name
VSS C1 Power/Other VSS C4 Power/Other VSS C7 Power/Other VSS C10 Power/Other VSS C13 Power/Other VSS C15 Power/Other VSS C18 Power/Other VSS C21 Power/Other VSS C24 Power/Other VSS D2 Power/Other VSS D5 Power/Other VSS D7 Power/Other VSS D9 Power/Other VSS D11 Power/Other VSS D13 Power/Other VSS D15 Power/Other VSS D17 Power/Other VSS D19 Power/Other VSS D21 Power/Other VSS D23 Power/Other VSS D26 Power/Other VSS E3 Power/Other VSS E6 Power/Other VSS E8 Power/Other VSS E10 Power/Other VSS E12 Power/Other VSS E14 Power/Other VSS E16 Power/Other VSS E18 Power/Other VSS E20 Power/Other VSS E22 Power/Other VSS E25 Power/Other VSS F1 Power/Other VSS F4 Power/Other VSS F5 Power/Other VSS F7 Power/Other VSS F9 Power/Other VSS F11 Power/Other
Pin
Number
Signal Buffer
Type
Direction
Table 4-3. Pin Listing by Pin Name
Pin Name
VSS F13 Power/Other VSS F15 Power/Other VSS F17 Power/Other VSS F19 Power/Other VSS F21 Power/Other VSS F24 Power/Other VSS G2 Power/Other VSS G6 Power/Other VSS G22 Power/Other VSS G23 Power/Other VSS G26 Power/Other VSS H3 Power/Other VSS H5 Power/Other VSS H21 Power/Other VSS H25 Power/Other VSS J1 Power/Other VSS J4 Power/Other VSS J6 Power/Other VSS J22 Power/Other VSS J24 Power/Other VSS K2 Power/Other VSS K5 Power/Other VSS K21 Power/Other VSS K23 Power/Other VSS K26 Power/Other VSS L3 Power/Other VSS L6 Power/Other VSS L22 Power/Other VSS L25 Power/Other VSS M1 Power/Other VSS M4 Power/Other VSS M5 Power/Other VSS M21 Power/Other VSS M24 Power/Other VSS N3 Power/Other VSS N6 Power/Other VSS N22 Power/Other VSS N23 Power/Other
Pin
Number
Signal Buffer
Type
Direction
Datasheet 61
Package Mechanical Specifications and Pin Information
Table 4-3. Pin Listing by Pin Name
Pin Name
VSS N26 Power/Other VSS P2 Power/Other VSS P5 Power/Other VSS P21 Power/Other VSS P24 Power/Other VSS R1 Power/Other VSS R4 Power/Other VSS R6 Power/Other VSS R22 Power/Other VSS R25 Power/Other VSS T3 Power/Other VSS T5 Power/Other VSS T21 Power/Other VSS T23 Power/Other VSS T26 Power/Other VSS U2 Power/Other VSS U6 Power/Other VSS U22 Power/Other VSS U24 Power/Other VSS V1 Power/Other VSS V4 Power/Other VSS V5 Power/Other VSS V21 Power/Other VSS V25 Power/Other VSS W3 Power/Other VSS W6 Power/Other VSS W22 Power/Other VSS W23 Power/Other VSS W26 Power/Other VSS Y2 Power/Other VSS Y5 Power/Other VSS Y21 Power/Other VSS Y24 Power/Other VSS AA1 Power/Other VSS AA4 Power/Other VSS AA6 Power/Other VSS AA8 Power/Other VSS AA10 Power/Other
Pin
Number
Signal Buffer
Type
Direction
Table 4-3. Pin Listing by Pin Name
Pin Name
VSS AA12 Power/Other VSS AA14 Power/Other VSS AA16 Power/Other VSS AA18 Power/Other VSS AA20 Power/Other VSS AA22 Power/Other VSS AA25 Power/Other VSS AB3 Power/Other VSS AB5 Power/Other VSS AB7 Power/Other VSS AB9 Power/Other VSS AB11 Power/Other VSS AB13 Power/Other VSS AB15 Power/Other VSS AB17 Power/Other VSS AB19 Power/Other VSS AB21 Power/Other VSS AB23 Power/Other VSS AB26 Power/Other VSS AC2 Power/Other VSS AC5 Power/Other VSS AC8 Power/Other VSS AC10 Power/Other VSS AC12 Power/Other VSS AC14 Power/Other VSS AC16 Power/Other VSS AC18 Power/Other VSS AC21 Power/Other VSS AC24 Power/Other VSS AD1 Power/Other VSS AD4 Power/Other VSS AD7 Power/Other VSS AD9 Power/Other VSS AD11 Power/Other VSS AD13 Power/Other VSS AD15 Power/Other VSS AD17 Power/Other VSS AD19 Power/Other
Pin
Number
Signal Buffer
Type
Direction
62 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-3. Pin Listing by Pin Name
Pin Name
VSS AD22 Power/Other VSS AD25 Power/Other VSS AE3 Power/Other VSS AE6 Power/Other VSS AE8 Power/Other VSS AE10 Power/Other VSS AE12 Power/Other VSS AE14 Power/Other VSS AE16 Power/Other VSS AE18 Power/Other VSS AE20 Power/Other VSS AE23 Power/Other VSS AE26 Power/Other VSS AF2 Power/Other VSS AF5 Power/Other VSS AF9 Power/Other VSS AF11 Power/Other VSS AF13 Power/Other VSS AF15 Power/Other VSS AF17 Power/Other VSS AF19 Power/Other VSS AF21 Power/Other VSS AF24 Power/Other VSSSENSE AF6 Power/Other Output
Pin
Number
Signal Buffer
Type
Direction
Table 4-4. Pin Listing by Pin Number
Pin
Number
A2 VSS Power/Other A3 IGNNE# CMOS Input A4 IERR# Open Drain Output A5 VSS Power/Other A6 SLP# CMOS Input A7 DBR# CMOS Output A8 VSS Power/Other A9 BPM[2]# Common Clock Output A10 PRDY# Common Clock Output A11 VSS Power/Other A12 TDO Open Drain Output
Pin Name
Signal Buffer
Type
Direction
Table 4-4. Pin Listing by Pin Number
Pin
Number
A13 TCK CMOS Input A14 VSS Power/Other A15 ITP_CLK[1] CMOS input A16 ITP_CLK[0] CMOS input A17 VSS Power/Other A18 THERMDC Power/Other A19 D[0]# Source Synch Input/Output A20 VSS Power/Other A21 D[6]# Source Synch Input/Output A22 D[2]# Source Synch Input/Output A23 VSS Power/Other A24 D[4]# Source Synch Input/Output A25 D[1]# Source Synch Input/Output A26 VSS Power/Other AA1 VSS Power/Other AA2 A[16]# Source Synch Input/Output AA3 A[14]# Source Synch Input/Output AA4 VSS Power/Other AA5 VCC Power/Other AA6 VSS Power/Other AA7 VCC Power/Other AA8 VSS Power/Other AA9 VCC Power/Other AA10 VSS Power/Other AA11 VCC Power/Other AA12 VSS Power/Other AA13 VCC Power/Other AA14 VSS Power/Other AA15 VCC Power/Other AA16 VSS Power/Other AA17 VCC Power/Other AA18 VSS Power/Other AA19 VCC Power/Other AA20 VSS Power/Other AA21 VCC Power/Other AA22 VSS Power/Other AA23 D[40]# Source Synch Input/Output AA24 D[33]# Source Synch Input/Output
Pin Name
Signal Buffer
Type
Direction
Datasheet 63
Package Mechanical Specifications and Pin Information
Table 4-4. Pin Listing by Pin Number
Pin
Number
AA25 VSS Power/Other AA26 D[46]# Source Synch Input/Output AB1 COMP[3] Power/Other Input/Output AB2 COMP[2] Power/Other Input/Output AB3 VSS Power/Other AB4 A[24]# Source Synch Input/Output AB5 VSS Power/Other AB6 VCC Power/Other AB7 VSS Power/Other AB8 VCC Power/Other AB9 VSS Power/Other AB10 VCC Power/Other AB11 VSS Power/Other AB12 VCC Power/Other AB13 VSS Power/Other AB14 VCC Power/Other AB15 VSS Power/Other AB16 VCC Power/Other AB17 VSS Power/Other AB18 VCC Power/Other AB19 VSS Power/Other AB20 VCC Power/Other AB21 VSS Power/Other AB22 VCC Power/Other AB23 VSS Power/Other AB24 D[50]# Source Synch Input/Output AB25 D[48]# Source Synch Input/Output AB26 VSS Power/Other AC1 RSVD Reserved AC2 VSS Power/Other AC3 A[20]# Source Synch Input/Output AC4 A[18]# Source Synch Input/Output AC5 VSS Power/Other AC6 A[25]# Source Synch Input/Output AC7 A[19]# Source Synch Input/Output AC8 VSS Power/Other AC9 VCC Power/Other AC10 VSS Power/Other
Pin Name
Signal Buffer
Type
Direction
Table 4-4. Pin Listing by Pin Number
Pin
Number
AC11 VCC Power/Other AC12 VSS Power/Other AC13 VCC Power/Other AC14 VSS Power/Other AC15 VCC Power/Other AC16 VSS Power/Other AC17 VCC Power/Other AC18 VSS Power/Other AC19 VCC Power/Other AC20 D[51]# Source Synch Input/Output AC21 VSS Power/Other AC22 D[52]# Source Synch Input/Output AC23 D[49]# Source Synch Input/Output AC24 VSS Power/Other AC25 D[53]# Source Synch Input/Output AC26 VCCA[3] Power/Other AD1 VSS Power/Other AD2 A[23]# Source Synch Input/Output AD3 A[21]# Source Synch Input/Output AD4 VSS Power/Other AD5 A[26]# Source Synch Input/Output AD6 A[28]# Source Synch Input/Output AD7 VSS Power/Other AD8 VCC Power/Other AD9 VSS Power/Other AD10 VCC Power/Other AD11 VSS Power/Other AD12 VCC Power/Other AD13 VSS Power/Other AD14 VCC Power/Other AD15 VSS Power/Other AD16 VCC Power/Other AD17 VSS Power/Other AD18 VCC Power/Other AD19 VSS Power/Other AD20 DINV[3]# Source Synch Input/Output AD21 D[60]# Source Synch Input/Output AD22 VSS Power/Other
Pin Name
Signal Buffer
Type
Direction
64 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-4. Pin Listing by Pin Number
Pin
Number
AD23 D[54]# Source Synch Input/Output AD24 D[57]# Source Synch Input/Output AD25 VSS Power/Other AD26 GTLREF Power/Other AE1 A[30]# Source Synch Input/Output AE2 A[27]# Source Synch Input/Output AE3 VSS Power/Other AE4 A[22]# Source Synch Input/Output AE5 ADSTB[1]# Source Synch Input/Output AE6 VSS Power/Other AE7 VCCSENSE Power/Other Output AE8 VSS Power/Other AE9 VCC Power/Other AE10 VSS Power/Other AE11 VCC Power/Other AE12 VSS Power/Other AE13 VCC Power/Other AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other AE17 VCC Power/Other AE18 VSS Power/Other AE19 VCC Power/Other AE20 VSS Power/Other AE21 D[59]# Source Synch Input/Output AE22 D[55]# Source Synch Input/Output AE23 VSS Power/Other AE24 DSTBN[3]# Source Synch Input/Output AE25 DSTBP[3]# Source Synch Input/Output AE26 VSS Power/Other AF1 A[31]# Source Synch Input/Output AF2 VSS Power/Other AF3 A[29]# Source Synch Input/Output AF4 A[17]# Source Synch Input/Output AF5 VSS Power/Other AF6 VSSSENSE Power/Other Output AF7 RSVD Reserved AF8 VCC Power/Other
Pin Name
Signal Buffer
Type
Direction
Table 4-4. Pin Listing by Pin Number
Pin
Number
AF9 VSS Power/Other AF10 VCC Power/Other AF11 VSS Power/Other AF12 VCC Power/Other AF13 VSS Power/Other AF14 VCC Power/Other AF15 VSS Power/Other AF16 VCC Power/Other AF17 VSS Power/Other AF18 VCC Power/Other AF19 VSS Power/Other AF20 D[58]# Source Synch Input/Output AF21 VSS Power/Other AF22 D[62]# Source Synch Input/Output AF23 D[56]# Source Synch Input/Output AF24 VSS Power/Other AF25 D[61]# Source Synch Input/Output AF26 D[63]# Source Synch Input/Output B1 VCCA[1] Power/Other B2 RSVD Reserved B3 VSS Power/Other B4 SMI# CMOS Input B5 INIT# CMOS Input B6 VSS Power/Other B7 DPSLP# CMOS Input B8 BPM[1]# Common Clock Output B9 VSS Power/Other B10 PREQ# Common Clock Input B11 RESET# Common Clock Input B12 VSS Power/Other B13 TRST# CMOS Input B14 BCLK[1] Bus Clock Input B15 BCLK[0] Bus Clock Input B16 VSS Power/Other B17 PROCHOT# Open Drain Output B18 THERMDA Power/Other B19 VSS Power/Other B20 D[7]# Source Synch Input/Output
Pin Name
Signal Buffer
Type
Direction
Datasheet 65
Package Mechanical Specifications and Pin Information
Table 4-4. Pin Listing by Pin Number
Pin
Number
B21 D[3]# Source Synch Input/Output B22 VSS Power/Other B23 D[13]# Source Synch Input/Output B24 D[9]# Source Synch Input/Output B25 VSS Power/Other B26 D[5]# Source Synch Input/Output C1 VSS Power/Other C2 A20M# CMOS Input C3 RSVD Reserved C4 VSS Power/Other C5 TEST1 Test C6 STPCLK# CMOS Input C7 VSS Power/Other C8 BPM[0]# Common Clock Output C9 BPM[3]# Common Clock Input/Output C10 VSS Power/Other C11 TMS CMOS Input C12 TDI CMOS Input C13 VSS Power/Other C14 BSEL[1] CMOS Output C15 VSS Power/Other C16 BSEL[0] CMOS Output C17 THERMTRIP# Open Drain Output C18 VSS Power/Other C19 DPWR# Common Clock Input C20 D[8]# Source Synch Input/Output C21 VSS Power/Other C22 DSTBP[0]# Source Synch Input/Output C23 DSTBN[0]# Source Synch Input/Output C24 VSS Power/Other C25 D[15]# Source Synch Input/Output C26 D[12]# Source Synch Input/Output D1 LINT0 CMOS Input D2 VSS Power/Other D3 FERR# Open Drain Output D4 LINT1 CMOS Input D5 VSS Power/Other D6 VCC Power/Other
Pin Name
Signal Buffer
Type
Direction
Table 4-4. Pin Listing by Pin Number
Pin
Number
D7 VSS Power/Other D8 VCC Power/Other D9 VSS Power/Other D10 VCCP Power/Other D11 VSS Power/Other D12 VCCP Power/Other D13 VSS Power/Other D14 VCCP Power/Other D15 VSS Power/Other D16 VCCP Power/Other D17 VSS Power/Other D18 VCC Power/Other D19 VSS Power/Other D20 VCC Power/Other D21 VSS Power/Other D22 VCC Power/Other D23 VSS Power/Other D24 D[10]# Source Synch Input/Output D25 DINV[0]# Source Synch Input/Output D26 VSS Power/Other E1 PSI# CMOS Output E2 VID[0] CMOS Output E3 VSS Power/Other E4 PWRGOOD CMOS Input E5 VCC Power/Other E6 VSS Power/Other E7 VCC Power/Other E8 VSS Power/Other E9 VCC Power/Other E10 VSS Power/Other E11 VCCP Power/Other E12 VSS Power/Other E13 VCCP Power/Other E14 VSS Power/Other E15 VCCP Power/Other E16 VSS Power/Other E17 VCC Power/Other E18 VSS Power/Other
Pin Name
Signal Buffer
Type
Direction
66 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-4. Pin Listing by Pin Number
Pin
Number
E19 VCC Power/Other E20 VSS Power/Other E21 VCC Power/Other E22 VSS Power/Other E23 D[14]# Source Synch Input/Output E24 D[11]# Source Synch Input/Output E25 VSS Power/Other E26 RSVD Reserved F1 VSS Power/Other F2 VID[1] CMOS Output F3 VID[2] CMOS Output F4 VSS Power/Other F5 VSS Power/Other F6 VCC Power/Other F7 VSS Power/Other F8 VCC Power/Other F9 VSS Power/Other F10 VCCP Power/Other F11 VSS Power/Other F12 VCCP Power/Other F13 VSS Power/Other F14 VCCP Power/Other F15 VSS Power/Other F16 VCCP Power/Other F17 VSS Power/Other F18 VCC Power/Other F19 VSS Power/Other F20 VCC Power/Other F21 VSS Power/Other F22 VCC Power/Other F23 TEST2 Test F24 VSS Power/Other F25 D[21]# Source Synch Input/Output F26 VCCA[0] Power/Other G1 RSVD Reserved G2 VSS Power/Other G3 VID[3] CMOS Output G4 VID[4] CMOS Output
Pin Name
Signal Buffer
Type
Direction
Table 4-4. Pin Listing by Pin Number
Pin
Number
G5 VCC Power/Other G6 VSS Power/Other G21 VCC Power/Other G22 VSS Power/Other G23 VSS Power/Other G24 D[22]# Source Synch Input/Output G25 D[17]# Source Synch Input/Output G26 VSS Power/Other H1 RS[0]# Common Clock Input H2 DRDY# Common Clock Input/Output H3 VSS Power/Other H4 VID[5] CMOS Output H5 VSS Power/Other H6 VCC Power/Other H21 VSS Power/Other H22 VCC Power/Other H23 D[16]# Source Synch Input/Output H24 D[20]# Source Synch Input/Output H25 VSS Power/Other H26 D[29]# Source Synch Input/Output J1 VSS Power/Other J2 LOCK# Common Clock Input/Output J3 BPRI# Common Clock Input J4 VSS Power/Other J5 VCC Power/Other J6 VSS Power/Other J21 VCC Power/Other J22 VSS Power/Other J23 D[23]# Source Synch Input/Output J24 VSS Power/Other J25 D[25]# Source Synch Input/Output J26 DINV[1]# Source Synch Input/Output K1 RS[1]# Common Clock Input K2 VSS Power/Other K3 HIT# Common Clock Input/Output K4 HITM# Common Clock Input/Output K5 VSS Power/Other K6 VCCP Power/Other
Pin Name
Signal Buffer
Type
Direction
Datasheet 67
Package Mechanical Specifications and Pin Information
Table 4-4. Pin Listing by Pin Number
Pin
Number
K21 VSS Power/Other K22 VCC Power/Other K23 VSS Power/Other K24 DSTBN[1]# Source Synch Input/Output K25 D[31]# Source Synch Input/Output K26 VSS Power/Other L1 BNR# Common Clock Input/Output L2 RS[2]# Common Clock Input L3 VSS Power/Other L4 DEFER# Common Clock Input L5 VCCP Power/Other L6 VSS Power/Other L21 VCCP Power/Other L22 VSS Power/Other L23 D[18]# Source Synch Input/Output L24 DSTBP[1]# Source Synch Input/Output L25 VSS Power/Other L26 D[26]# Source Synch Input/Output M1 VSS Power/Other M2 DBSY# Common Clock Input/Output M3 TRDY# Common Clock Input M4 VSS Power/Other M5 VSS Power/Other M6 VCCP Power/Other M21 VSS Power/Other M22 VCCP Power/Other M23 D[24]# Source Synch Input/Output M24 VSS Power/Other M25 D[28]# Source Synch Input/Output M26 D[19]# Source Synch Input/Output N1 VCCA[2] Power/Other N2 ADS# Common Clock Input/Output N3 VSS Power/Other N4 BR0# Common Clock Input/Output N5 VCCP Power/Other N6 VSS Power/Other N21 VCCP Power/Other N22 VSS Power/Other
Pin Name
Signal Buffer
Type
Direction
Table 4-4. Pin Listing by Pin Number
Pin
Number
N23 VSS Power/Other N24 D[27]# Source Synch Input/Output N25 D[30]# Source Synch Input/Output N26 VSS Power/Other P1 REQ[3]# Source Synch Input/Output P2 VSS Power/Other P3 REQ[1]# Source Synch Input/Output P4 A[3]# Source Synch Input/Output P5 VSS Power/Other P6 VCCP Power/Other P21 VSS Power/Other P22 VCCP Power/Other P23 VCCQ[0] Power/Other P24 VSS Power/Other P25 COMP[0] Power/Other Input/Output P26 COMP[1] Power/Other Input/Output R1 VSS Power/Other R2 REQ[0]# Source Synch Input/Output R3 A[6]# Source Synch Input/Output R4 VSS Power/Other R5 VCCP Power/Other R6 VSS Power/Other R21 VCCP Power/Other R22 VSS Power/Other R23 D[39]# Source Synch Input/Output R24 D[37]# Source Synch Input/Output R25 VSS Power/Other R26 D[38]# Source Synch Input/Output T1 REQ[4]# Source Synch Input/Output T2 REQ[2]# Source Synch Input/Output T3 VSS Power/Other T4 A[9]# Source Synch Input/Output T5 VSS Power/Other T6 VCCP Power/Other T21 VSS Power/Other T22 VCCP Power/Other T23 VSS Power/Other T24 DINV[2]# CMOS Input/Output
Pin Name
Signal Buffer
Type
Direction
68 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-4. Pin Listing by Pin Number
Pin
Number
T25 D[34]# Source Synch Input/Output T26 VSS Power/Other U1 A[13]# Source Synch Input/Output U2 VSS Power/Other U3 ADSTB[0]# Source Synch Input/Output U4 A[4]# Source Synch Input/Output U5 VCC Power/Other U6 VSS Power/Other U21 VCCP Power/Other U22 VSS Power/Other U23 D[35]# Source Synch Input/Output U24 VSS Power/Other U25 D[43]# Source Synch Input/Output U26 D[41]# Source Synch Input/Output V1 VSS Power/Other V2 A[7]# Source Synch Input/Output V3 A[5]# Source Synch Input/Output V4 VSS Power/Other V5 VSS Power/Other V6 VCC Power/Other V21 VSS Power/Other V22 VCC Power/Other V23 D[36]# Source Synch Input/Output V24 D[42]# Source Synch Input/Output V25 VSS Power/Other V26 D[44]# Source Synch Input/Output W1 A[8]# Source Synch Input/Output W2 A[10]# Source Synch Input/Output W3 VSS Power/Other W4 VCCQ[1] Power/Other W5 VCC Power/Other W6 VSS Power/Other W21 VCC Power/Other W22 VSS Power/Other W23 VSS Power/Other W24 DSTBP[2]# Source Synch Input/Output W25 DSTBN[2]# Source Synch Input/Output W26 VSS Power/Other
Pin Name
Signal Buffer
Type
Direction
Table 4-4. Pin Listing by Pin Number
Pin
Number
Y1 A[12]# Source Synch Input/Output Y2 VSS Power/Other Y3 A[15]# Source Synch Input/Output Y4 A[11]# Source Synch Input/Output Y5 VSS Power/Other Y6 VCC Power/Other Y21 VSS Power/Other Y22 VCC Power/Other Y23 D[45]# Source Synch Input/Output Y24 VSS Power/Other Y25 D[47]# Source Synch Input/Output Y26 D[32]# Source Synch Input/Output
Pin Name
Signal Buffer
Type
Direction
Datasheet 69
Package Mechanical Specifications and Pin Information

4.2 Alphabetical Signals Reference

Table 4-5. Signal Description (Sheet 1 of 7)
Name Type Description
A[31:3]# Input/
Output
A20M# Input If A20M# (Address-20 Mask) is asserted, the processor masks physical address
ADS# Input/
Output
ADSTB[1:0]# Input/
Output
A[31:3]# (Address) define a 2 phase 1 of the address phase, these pins transmit the address of a transaction. In sub-phase 2, these pins transmit transaction type information. These signals must connect the appropriate pins of both agents on the Intel Processor FSB. A[31:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which are sampled before RESET# is deasserted.
bit 20 (A20#) before looking up a line in any internal cache and before driving a read/write transaction on the bus. Asserting A20M# emulates the 8086 processor's address wrap-around at the 1-Mbyte boundary. Assertion of A20M# is only supported in real mode.
A20M# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.
ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[31:3]# and REQ[4:0]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction.
Address strobes are used to latch A[31:3]# and REQ[4:0]# on their rising and falling edges. Strobes are associated with signals as shown below.
32
-byte physical memory address space. In sub-
®
Pentium® M
Signals Associated Strobe
REQ[4:0]#, A[16:3]# ADSTB[0]# A[31:17]# ADSTB[1]#
BCLK[1:0] Input The differential pair BCLK (Bus Clock) determines the FSB frequency. All FSB
BNR# Input/
BPM[2:0]# BPM[3]
BPRI# Input BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It
BR0# Input/
Output
Output
Input/
Output
Output
agents must receive these signals to drive their outputs and latch their inputs. All external timing parameters are specified with respect to the rising edge of
BCLK0 crossing V BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is
unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.
BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[3:0]# should connect the appropriate pins of all Intel
®
Pentium Please refer to the platform design guides for
must connect the appropriate pins of both FSB agents. Observing BPRI# active (as asserted by the priority agent) causes the other agent to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#.
BR0# is used by the processor to request the bus. The arbitration is done between Intel MCH-M (High Priority Agent).
M FSB agents.This includes debug or performance monitoring tools.
®
Pentium® M (Symmetric Agent) and Intel 855 chipset family
CROSS
.
®
more detailed information.
70 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-5. Signal Description (Sheet 2 of 7)
Name Type Description
BSEL[1:0] Output These signals are used to select the FSB clock frequency. They should be
COMP[3:0] Analog COMP[3:0] must be terminated on the system board using precision (1%
D[63:0]# Input/
Output
connected between the processor and the chipset MCH and clock generator on Intel 915 chipset family based platforms. These signals must be left unconnected on platforms designed with the Intel 855 chipset family. On these platforms, FSB clock frequency should be configured on the motherboard.
tolerance) resistors. Refer to the platform design guides for more details on implementation.
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the FSB agents, and must connect the appropriate pins on both agents. The data driver asserts DRDY# to indicate a valid data transfer.
D[63:0]# are quad-pumped signals and will thus be driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to data strobes and DINV#
Quad-Pumped Signal Groups
.
Data Group
D[15:0]# 0 0 D[31:16]# 1 1 D[47:32]# 2 2 D[63:48]# 3 3
Furthermore, the DINV# pins determine the polarity of the data signals. Each group of 16 data signals corresponds to one DINV# signal. When the DINV# signal is active, the corresponding data group is inverted and therefore sampled active high.
DBR# Output DBR# (Data Bus Reset) is used only in processor systems where no debug port
DBSY# Input/
Output
DEFER# Input DEFER# is asserted by an agent to indicate that a transaction cannot be
is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no connect in the system. DBR# is not a processor signal.
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the FSB to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on both FSB agents.
guaranteed in-order completion. Assertion of DEFER# is normally the responsibility of the addressed memory or Input/Output agent. This signal must connect the appropriate pins of both FSB agents.
DSTBN#/
DSTBP#
DINV#
Datasheet 71
Package Mechanical Specifications and Pin Information
Table 4-5. Signal Description (Sheet 3 of 7)
Name Type Description
DINV[3:0]# Input/
Output
DINV[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the data on the data bus is inverted. The bus agent will invert the data bus signals if more than half the bits, within the covered group, would change level in the next cycle.
DINV[3:0]# Assignment To Data Bus
Bus Signal Data Bus Signals
DINV[3]# D[63:48]# DINV[2]# D[47:32]# DINV[1]# D[31:16]# DINV[0]# D[15:0]#
DPSLP# Input DPSLP# when asserted on the platform causes the processor to transition from
DPWR# Input DPWR# is a control signal from the Intel
DRDY# Input/
Output
DSTBN[3:0]# Input/
Output
DSTBP[3:0]# Input/
Output
the Sleep State to the Deep Sleep state. In order to return to the Sleep state, DPSLP# must be deasserted. DPSLP# is driven by the ICH4-M component and also connects to the Intel 855 chipset family MCH-M component.
®
®
to reduce power on the Intel DRDY# (Data Ready) is asserted by the data driver on each data transfer,
indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of both FSB agents.
Data strobe used to latch in D[63:0]#.
Signals Associated Strobe
D[15:0]#, DINV[0]# DSTBN[0]# D[31:16]#, DINV[1]# DSTBN[1]# D[47:32]#, DINV[2]# DSTBN[2]# D[63:48]#, DINV[3]# DSTBN[3]#
Data strobe used to latch in D[63:0]#.
Signals Associated Strobe
D[15:0]#, DINV[0]# DSTBP[0]# D[31:16]#, DINV[1]# DSTBP[1]# D[47:32]#, DINV[2]# DSTBP[2]# D[63:48]#, DINV[3]# DSTBP[3]#
Pentium® M data bus input buffers.
852/855 and 915 chipset family used
72 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-5. Signal Description (Sheet 4 of 7)
Name Type Description
FERR#/PBE# Output FERR# (Floating-point Error)PBE#(Pending Break Event) is a multiplexed signal
GTLREF Input GTLREF determines the signal reference level for AGTL+ input pins. GTLREF
HIT#
HITM#
IERR# Output IERR# (Internal Error) is asserted by a processor as the result of an internal
IGNNE# Input IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a
INIT# Input INIT# (Initialization), when asserted, resets integer registers inside the processor
ITP_CLK[1:0] Input ITP_CLK[1:0] are copies of BCLK that are used only in processor systems
Input/
Output
Input/
Output
and its meaning is qualified with STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating point when the processor detects an unmasked floating-point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS­DOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. When FERR#/PBE# is asserted, indicating a break event, it will remain asserted until STPCLK# is deasserted. Assertion of PREQ# when STPCLK# is active will also cause an FERR# break event.
For additional information on the pending break event functionality, including identification of support of the feature and enable/disable information, refer to Volume 3 of the
Processor Identification and CPUID Instruction application note.
For termination requirements please refer to the platform design guides.
should be set at 2/3 V if a signal is a logical 0 or logical 1. Please refer to the platform design guides for details on GTLREF implementation.
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Either FSB agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together.
error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the FSB. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET#, BINIT#, or INIT#.
For termination requirements please refer to the platform design guides.
numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.
without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output Write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# must connect the appropriate pins of both FSB agents.
If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-in Self-Test (BIST)
For termination requirements please refer to the platform design guides.
where no debug port is implemented on the system board. ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port implemented on an interposer. If a debug port is implemented in the system, ITP_CLK[1:0] are no connects in the system. These are not processor signals.
Intel  Architecture Software Developer’s Manual and the Intel
. GTLREF is used by the AGTL+ receivers to determine
CCP
Datasheet 73
Package Mechanical Specifications and Pin Information
Table 4-5. Signal Description (Sheet 5 of 7)
Name Type Description
LINT[1:0] Input LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC
LOCK# Input/
Output
PRDY# Output Probe Ready signal used by debug tools to determine processor debug
PREQ# Input Probe Request signal used by debug tools to request debug operation of the
PROCHOT# Output PROCHOT# (Processor Hot) will go active when the processor temperature
PSI# Output Processor Power Status Indicator signal. This signal is asserted when the
PWRGOOD Input PWRGOOD (Power Good) is a processor input. The processor requires this
REQ[4:0]# Input/
Output
RESET# Input Asserting the RESET# signal resets the processor to a known state and
Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium Processor. Both signals are asynchronous.
Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after reset, operation of these pins as LINT[1:0] is the default configuration.
LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of both FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction.
When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the FSB throughout the bus locked operation and ensure the atomicity of lock.
readiness. Please refer to the platform design guides for more implementation details.
processor. Please refer to the platform design guides for more implementation details.
monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit has been activated, if enabled. See Chapter 5 for more details.
For termination requirements please refer to the platform design guides. This signal may require voltage translation on the motherboard. Please refer to
the platform design guides for more details.
processor is in a lower state (Deep Sleep and Deeper Sleep). See Section 2.1.6 for more details.
signal to be a clean indication that the clocks and power supplies are stable and within their specifications. Clean implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state.
The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation.
For termination requirements please refer to the platform design guides. REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB
agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[0]#.
invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least two milliseconds after
CC and BCLK have reached their proper specifications. On observing active
V RESET#, both FSB agents will deassert their outputs within two clocks. All processor straps must be valid within the specified setup time before RESET# is deasserted.
Please refer to the implementation details. There is a 55 ohm (nominal) on die pullup resistor on this signal.
Platform Design Guides for termination requirements and
74 Datasheet
Package Mechanical Specifications and Pin Information
Table 4-5. Signal Description (Sheet 6 of 7)
Name Type Description
RS[2:0]# Input RS[2:0]# (Response Status) are driven by the response agent (the agent
RSVD Reserved/
SLP# Input SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter
SMI# Input SMI# (System Management Interrupt) is asserted asynchronously by system
STPCLK# Input STPCLK# (Stop Clock), when asserted, causes the processor to enter a low
TCK Input TCK (Test Clock) provides the clock input for the processor test bus (also known
TDI Input TDI (Test Data In) transfers serial test data into the processor. TDI provides the
TDO Output TDO (Test Data Out) transfers serial test data out of the processor. TDO
TEST1, TEST2
THERMDA Other Thermal Diode Anode. THERMDC Other Thermal Diode Cathode. THERMTRIP# Output The processor protects itself from catastrophic overheating by use of an internal
No
Connect
Input TEST1 and TEST2 must have a stuffing option of separate pull down resistors to
responsible for completion of the current transaction), and must connect the appropriate pins of both FSB agents.
These pins are RESERVED and must be left unconnected on the board. However, it is recommended that routing channels to these pins on the board be kept open for possible future use. Please refer to the platform design guides for more details.
the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop-Grant state, rest arting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor will exit the Sleep state and transition to the Deep Sleep state.
logic. On accepting a System Management Interrupt, the processor saves the current state and enter System Management mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler.
If SMI# is asserted during the deassertion of RESET# the processor will tristate its outputs.
power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.
as the Test Access Port). Please refer to the platform design guides for termination requirements and
implementation details.
serial input needed for JTAG specification support. Please refer to the platform design guides for termination requirements and
implementation details.
provides the serial output needed for JTAG specification support. Please refer to the platform design guides for termination requirements and
implementation details.
. Please refer to the platform design guides for more details.
V
SS
thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor will stop all execution when the junction temperature exceeds approximately 125 °C. This is signalled to the system by the THERMTRIP# (Thermal Trip) pin.
For termination requirements please refer to the platform design guides .
Datasheet 75
Package Mechanical Specifications and Pin Information
Table 4-5. Signal Description (Sheet 7 of 7)
Name Type Description
TMS Input TMS (Test Mode Select) is a JTAG specification support signal used by debug
TRDY# Input TRDY# (Target Ready) is asserted by the target to indicate that it is ready to
TRST# Input TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be
V
CC
[3:0] Input V
V
CCA
V
CCP
[1:0] Input Quiet power supply for on die COMP circuitry. These pins should be connected
V
CCQ
V
CCSENSE
Input Processor core power supply.
Input Processor I/O power supply.
Output V
VID[5:0] Output VID[5:0] (Voltage ID) pins are used to support automatic selection of power
V
SSSENSE
Output V
tools. Please refer to the platform design guides for termination requirements and
implementation details.
receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of both FSB agents.
driven low during power on Reset. Please refer to the platform design guides for termination requirements and implementation details.
provides isolated power for the internal processor core PLL’s. Refer to the
CCA
platform design guides for complete implementation details.
on the motherboard. However, these connections should enable addition
to V
CCP
of decoupling on the V
is an isolated low impedance connection to processor core power
CCSENSE
). It can be used to sense or measure power near the silicon with little noise.
(V
CC
Please refer to the platform design guides for termination recommendations and
CCQ
more details.
supply voltages (Vcc). Unlike some previous generations of processors, these are CMOS signals that are driven by the Intel voltage supply for these pins must be valid before the VR can supply Vcc to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 3-1 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself.
is an isolated low impedance connection to processor core VSS. It can
SSSENSE
be used to sense or measure ground near the silicon with little noise. Please refer to the platform design guides for termination recommendations and more details.
lines if necessary.
®
Pentium® M processor. The
§§
76 Datasheet

Thermal Specifications and Design Considerations

5 Thermal Specifications and
Design Considerations
The Pentium M Processor requires a thermal solution to maintain temperatures within operating limits as set forth in Section 5.1. Any attempt to operate that processor outside these operating limits may result in permanent damage to the processor and potentially other components in the system. As processor technology changes, thermal management becomes increasingly crucial when building computer systems. Maintaining the proper thermal environment is key to reliable, long-term system operation. A complete thermal solution includes both component and system level thermal management features. Component level thermal solutions include active or passive heatsinks or heat exchangers attached to the processor exposed die. The solution should make firm contact to the die while maintaining processor mechanical specifications such as pressure. A typical system level thermal solution may consist of a processor fan ducted to a heat exchanger that is thermally coupled to the processor via a heat pipe or direct die attachment. A secondary fan or air from the processor fan may also be used to cool other platform components or lower the internal ambient temperature within the system.
T o allow for the optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed such that the processor must remain within the minimum and maximum junction temperature (Tj) specifications at the corresponding thermal design power (TDP) value listed in Table 5-1. Thermal solutions not design to provide this level of thermal capability may affect the long-term reliability of the processor and system.
The maximum junction temperature is define d by an activation of the processor Intel Thermal Monitor. Refer to Section 5.1.3 for more details. Analysis indicates that real applications are unlikely to cause the processor to consume the theoretical maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the TDP indicated in Table 5-1. The Intel Thermal Monitor feature is designed to help protect the processor in the unlikely event that an application exceeds the TDP recommendation for a sustained period of time. For more details on the usage of this feature, refer to Section 5.1.3. In all cases the Intel Thermal Monitor feature must be enabled for the processor to remain within specification.
Datasheet 77
Thermal Specifications and Design Considerations
Table 5-1. Power Specifications for the Intel® Pentium M Processor (Sheet 1 of 3)
Symbol
TDP 765 2.1 GHz & HFM Vcc 21 W At 100°C, Notes 1,
Symbol
Processor
Number
755 2.0 GHz & HFM Vcc 21 745 1.8 GHz & HFM Vcc 21 735 1.7 GHz & HFM Vcc 21 725 1.6 GHz & HFM Vcc 21 715 1.5 GHz & HFM Vcc 21 778 1.6 GHz & HFM Vcc 10 758 1.5 GHz & HFM Vcc 10 738 1.4 GHz & HFM Vcc 10 765/755/745/
735/725/715 & 778/758/738
773 1.3 GHz & HFM Vcc 5.5 753 1.2 GHz & HFM Vcc 5.5 733J 1.1 GHz & HFM Vcc 5.5 733 1.1 GHz & HFM Vcc 5.0 723 1.0 GHz & HFM Vcc 5.0 773/753/733J/
733/723
Processor
Number
Core Frequency
& Voltage
600 MHz & LFM Vcc 7.5
600 MHz & LFM Vcc 3.0
Parameter Min Typ Max Unit Notes
Thermal Design
Power
Unit Notes
4, 5
P P
AH, SGNT
765/755/745/ 735/725/715
778/758/738 Auto Halt, Stop Grant
773/753/733J Auto Halt, Stop Grant
733/723 Auto Halt, Stop Grant
Auto Halt, Stop Grant Power:
LFM Vcc 3.3 HFM Vcc 10.9
Power: LFM Vcc 3.3 HFM Vcc 4.2
Power: LFM Vcc 1.1 HFM Vcc 1.9
Power: LFM Vcc 1.0 HFM Vcc 1.8
W At 50°C, Note 2
W At 50°C, Note 2
W At 50°C, Note 2, 5
W At 50°C, Note 2
78 Datasheet
Thermal Specifications and Design Considerations
Table 5-1. Power Specifications for the Intel® Pentium M Processor (Sheet 2 of 3)
Symbol
P
SLP
P
DSLP
P
DPRSL
P1
Processor
Number
765/755/745/ 735/725/715
Parameter Min Typ Max Unit Notes
Sleep Power: W At 50 °C, Note 2 LFM Vcc 3.2 HFM Vcc 10.5
778/758/738 Sleep Power: W At 50 °C, Note 2
LFM Vcc 3.2 HFM Vcc 4.0
773/753/733J Sleep Power: W At 50 °C, Note 2, 5
LFM Vcc 1.0 HFM Vcc 1.7
733/723 Sleep Power: W At 50 °C, Note 2
LFM Vcc 0.9 HFM Vcc 1.7
765/755/745/ 735/725/715
Deep Sleep Power: W At 35 °C, Note 2 LFM Vcc 2.5 HFM Vcc 8.8
778/758/738 Deep Sleep Power: W At 35 °C, Note 2
LFM Vcc 2.5 HFM Vcc 2.9
773/753/733J Deep Sleep Power: W At 35 °C, Note 2, 5
LFM Vcc 0.7 HFM Vcc 1.25
733/723 Deep Sleep Power: W At 35 °C, Note 2
LFM Vcc 0.6 HFM Vcc 1.2
765/755/745/ 735/725/715 &
Deeper Sleep Power @ 0.748V
0.8 W At 35 °C, Note 2
778/758/738 753/733J/733/
723
Deeper Sleep Power (ULV only)@ 0.748V
0.5 W At 35 °C, Note 2, 5
Datasheet 79
Thermal Specifications and Design Considerations
Table 5-1. Power Specifications for the Intel® Pentium M Processor (Sheet 3 of 3)
Symbol
P
DPRSL
P2
T
J
NOTES:
1. The Thermal Design Power (TDP) specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can dissipate.
2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated.
3. As measured by the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic mode is used to indicate that the maximum T
4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications.
5. For 733J, CPU Signature = 06D8h.
Processor
Number
765/755/745/ 735/725/715 & 778/758/738
753/733J/733/ 723
Parameter Min Typ Max Unit Notes
Deeper Sleep Power @ 0.726V
Deeper Sleep Power (ULV only)@ 0.726
Junction Temperature
has been reached. Refer to Section 5.1 for more details.
J

5.1 Thermal Specifications

5.1.1 Thermal Diode

The Pentium M Processor incorporates two methods of monitoring die temperature, the Intel Thermal Monitor and the thermal diode. The Intel Thermal Monitor (detailed in Section 5.1) must be used to determine when the maximum specified processor junction temperature has been reached. The second method, the thermal diode, can be read by an off-die analog/digital converter (a thermal sensor) located on the motherboard, or a stand-alone measurement kit. The thermal diode may be used to monitor the die temperature of the processor for thermal management or instrumentation purposes but cannot be used to indicate that the maximum T been reached. When using the thermal diode, a temperature offset value must be read from a processor Model Specific register (MSR) and applied. See Section 5.1.2 for more details. Please see Section 5.1.3 for thermal diode usage recommendation when the PROCHOT# signal is not asserted. Table 5-2 and Table 5-3 provide the diode interface and specifications.
0.7 W At 35 °C, Note 2
0.4 W At 35 °C, Note 2, 5
0 100 C Notes 3, 4
of the processor has
J
Note: The reading of the external thermal sensor (on the motherboard) connected to the processor
thermal diode signals, will not necessarily reflect the temperature of the hottest location on the die. This is due to inaccuracies in the external thermal sensor , on-die tempe rature gradients between the location of the thermal diode and the hottest location on the die, and time based variations in the die temperature measurement. Time-based variations can occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the T
temperature can change.
J
Offset between the thermal diode based temperature reading and the Intel Thermal Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic mode activation of thermal control circuit. This temperature offset must be taken into account when using the processor thermal diode to implement power management events.
80 Datasheet

5.1.2 Thermal Diode Offset

A temperature offset value (specified as Toffset in Table 5-3) will be programmed into a Pentium M Processor Model Specific Register (MSR). This offset is determined by using a thermal diode ideality factor mean value of n = 1.0022 (shown in Table 5-3) as a reference. This offset must be applied to the junction temperature read by the thermal diode. Any temperature adjustments due to differences between the reference ideality value of 1.0022 and the default ideality values programmed into the on-board thermal sensors, will have to be made before the above offset is applied.
Table 5-2. Thermal Diode Interface
Signal Name Pin/Ball Number Signal Description
THERMDA B18 Thermal diode anode THERMDC A18 Thermal diode cathode
Table 5-3. Thermal Diode Specification
Symbol Parameter Min Typ Max Unit Notes
Thermal Specifications and Design Considerations
I
FW
T offset Thermal diode temperature
n Reference Diode Ideality
R
T
NOTES:
1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not support or recommend operation of the thermal diode when the processor power supplies are not within their specified tolerance range.
2. Characterized at 100 °C.
3. Not 100% tested. Specified by design/characterization.
4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation: I
FW=Is
Where I and T = absolute temperature (Kelvin). Value shown in the table is not the Pentium M Processor thermal diode ideality factor. It is a reference value used to calculate the Pentium M Processor thermal diode temperature offset.
5. The series resistance, R temperature. R board trace resistance between the socket and the external remote diode thermal sensor. R remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation: T
6. Offset value is programmed in processor Model Specific Register.
Forward Bias Current 5 300 A Note 1
offset
Factor used to calculate temperature offset
Series Resistance 3.06 Ohms 2, 3, 5
(qVD/nkT)
*(e
= saturation current, q = electronic charge, VD = voltage across the diode, k = Boltzmann Constant,
S
= [RT*(N-1)*I
error
-1)
, is provided to allow for a more accurate measurement of the diode junction
T
as defined includes the pins of the processor but does not include any socket resistance or
T
]/[(no/q)*ln N
FWmin
-4 11 °C 2, 6
1.0022 Notes 2, 3, 4
can be used by
T
Datasheet 81
Thermal Specifications and Design Considerations

5.1.3 Intel® Thermal Monitor

The Intel Thermal Monitor helps control the processor temperature by activating the TCC when the processor silicon reaches its maximum operating temperature. The temperature at which Intel Thermal Monitor activates the thermal control circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.
With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would not be detectable. An under-designed thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under designed may not be capable of cooling th e processor even when the TCC is active continuously.
The Intel Thermal Monitor controls the processor temperature by modulating (starting and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep technology transition when the processor silicon reaches its maximum operating temperature. The Intel Thermal Monitor uses two modes to activate the TCC: Automatic mode and On-Demand mode. If both modes are activated, Automatic mode takes precedence.
Caution: The Intel Thermal Monitor Automatic Mode mst be enabled via BIOS for the processor to be
operating within specifications. There are two automatic modes called Intel Thermal Monitor 1 and Intel Thermal Monitor 2. These
modes are selected by writing values to the Model Specific registers (MSRs) of the processor. After Automatic mode is enabled, the TCC will activate only when the internal die temperature reaches the maximum allowed value for operation.
Likewise, when Intel Thermal Monitor 2 is enabled, and a high temperature situation exists, the processor will perform an Enhanced Intel SpeedStep technology transition to a lower operating point. When the processor temperature drops below the critical level, the processor will make an Enhanced Intel SpeedStep technology transition to the last requested operating point. Intel Thermal Monitor 2 is the recommended mode on the Intel
®
Pentium® M processors.
If a processor load based Enhanced Intel SpeedStep technology transition (through MSR write) is initiated when an Intel Thermal Monitor 2 period is active, there are two possible results:
1.If the processor load based Enhanced Intel SpeedStep technology transition target frequency is
higher than the Intel Thermal Monitor 2 transition based target frequency, the processor load­based transition will be deferred until the Intel Thermal Monitor 2 event has been completed.
2.If the processor load-based Enhanced Intel SpeedStep technology transition target frequency is
lower than the Intel Thermal Monitor 2 transition based target frequency, the processor will transition to the processor load-based Enhanced Intel SpeedStep technology target frequency point.
When Intel Thermal Monitor 1 is enabled, and a high temperature situation exists, the clocks will be modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are processor speed dependent and will decrease linearly as processor core frequencies increase. Once the temperature has returned to a non-critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the trip point. The duty cycle is factory configured
82 Datasheet
Thermal Specifications and Design Considerations
and cannot be modified. Also, automatic mode does not require any additional hardware, software drivers, or interrupt handling routines. Processor performance will be decreased by the same amount as the duty cycle when the TCC is active, however, with a properly designed and characterized thermal solution the TCC most likely will never be activated, or only will be activated briefly during the most power intensive applications.
The TCC may also be activated via On-Demand mode. If bit 4 of the ACPI Intel Thermal Monitor Control Register is written to a 1, the TCC will be activated immediately, independent of the processor temperature. When using On-Demand mode to activate the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor Control Register. In automatic mode, the duty cycle is fixed at 50% on, 50% off, however in On-Demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in
12.5% increments. On-Demand mode may be used at the same time Automatic mode is enabled, however, if the system tries to enable the TCC via On-Demand mode at the same time automatic mode is enabled and a high temperature condition exists, automatic mode will take precedence.
An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its temperature is above the thermal trip point. Bus snooping and interrupt latching are also active while the TCC is active.
Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor feature also includes one ACPI register, one performance counter register, three model specific registers (MSR), and one I/O pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#.
Note: PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep, Deep Sleep, and
Deeper Sleep low power states (internal clocks stopped), hence the thermal diode reading must be used as a safeguard to maintain the processor junction temperature within the 100 °C (maximum) specification. If the platform thermal solution is not able to maintain the processor junctio n temperature within the maximum specification, the system must initiate an orderl y shutdown to prevent damage. If the processor enters one of the above low power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the Low Power state and the processor junction temperature drops below the thermal trip point.
If automatic mode is disabled, the processor will be operating out of specification. Regardless of enabling the automatic or On-Demand modes, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature of approximately 125 °C. At this point the FSB signal THERMTRIP# will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. When THERMTRIP# is asserted, the processor core voltage must be shut down within the time specified in Chapter 3.
§
Datasheet 83
Thermal Specifications and Design Considerations
84 Datasheet
Loading...